Learn More
In estrogen responsive MCF-7 cells, estradiol (E2) binding to ERα leads to transcriptional regulation of genes involved in the control of cell proliferation and survival. MicroRNAs (miRNAs) have emerged as key post-transcriptional regulators of gene expression. The aim of this study was to explore whether miRNAs were involved in hormonally regulated(More)
BACKGROUND Ischemia reperfusion injury (IRI) is a leading cause of acute kidney injury (AKI) in both native and transplanted kidneys. The objective of the present study was to evaluate whether low-molecular-weight fucoidan (LMWF) could attenuate renal IRI in an animal model and in vitro cell models and study the mechanisms in which LMWF protected from IRI.(More)
Dynamic nuclear Ca(2+) signals play pivotal roles in diverse cellular functions including gene transcription, cell growth, differentiation, and apoptosis. Here we report a novel nuclear Ca(2+) regulatory mechanism mediated by inositol 1,4,5-trisphosphate receptors (IP(3)Rs) around the nucleus in developing cardiac myocytes. Activation of IP(3)Rs by(More)
Diabetic cardiomyopathy (DCM) is characterized by cardiac dysfunction and cardiomyocyte apoptosis. Oxidative stress is suggested to be the major contributor to the development of DCM. This study was intended to evaluate the protective effect of low molecular weight fucoidan (LMWF) against cardiac dysfunction in diabetic rats. Type 2 diabetic goto-kakizaki(More)
Diabetic retinopathy (DR) is a hyperglycemia-induced ischemic disorder characterized by microvascular dysfunction and neovascularization. It is a leading cause of blindness in many countries, yet efficient drugs are limited now for prevention and treatment of DR. Low molecular weight fucoidan (LMWF), extract from brown algae, has been shown to possess(More)
Endothelial dysfunction, characterized by impairment of endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) bioavailability, has been implicated in diabetic cardiovascular pathogenesis. In this study, low-molecular-weight fucoidan (LMWF), which has multiple biological activities including anti-inflammatory and anti-oxidative properties, was(More)
BACKGROUND/AIMS Stromal interacting molecule-1 (STIM1) aggregation and redistribution to plasma membrane to interact with Orai1 constitute the core mechanism of store-operated Ca2+ entry (SOCE). Previous study has revealed that calsequestrin-1 (CSQ1) regulates SOCE in HEK293 cells through interacting with STIM1 and inhibiting STIM1/Orai1 interaction. Here,(More)
Interaction between the endoplasmic reticulum (ER)-located stromal interaction molecue1 (STIM1) and the plasma membrane-located Ca(2+) channel subunit, Orai1, underlies store-operated Ca(2+) entry (SOCE). Calsequestrin1 (CSQ1), a sarcoplasmic reticulum Ca(2+) buffering protein, inhibits SOCE, but the mechanism of action is unknown. We identified an(More)
Hepatocellular carcinoma (HCC) is one of the most common malignant tumours in the world, especially in Guangxi, China. The causes and mechanism of its tumourigenesis and development have not been completely clarified Some studies revealed that the hepatic local cellular immune function was one of the factors. In the present study, the local(More)
Zinc-finger, MYND-type containing 10 (ZMYND10), or more commonly called BLU, expression is frequently downregulated in nasopharyngeal carcinoma (NPC) and many other tumors due to promoter hypermethylation. Functional evidence shows that the BLU gene inhibits tumor growth in animal assays, but the detailed molecular mechanism responsible for this is still(More)