Learn More
Graph analysis performs many random reads and writes, thus, these workloads are typically performed in memory. Traditionally, analyzing large graphs requires a cluster of machines so the aggregate memory exceeds the graph size. We demonstrate that a multicore server can process graphs with billions of vertices and hundreds of billions of edges, utilizing(More)
We describe a storage system that removes I/O bottlenecks to achieve more than one million IOPS based on a userspace file abstraction for arrays of commodity SSDs. The file abstraction refactors I/O scheduling and placement for extreme parallelism and non-uniform memory and I/O. The system includes a set-associative, parallel page cache in the user space.(More)
Statistical semantic parser trained on sufficient in-domain data has shown robustness to speech recognition errors in end-to-end spoken dialogue systems. However, when the dialogue domain is extended, due to the introduction of new semantic slots, values and unknown speech pattern, the parsing performance may significantly degrade. Effective re-training of(More)
Sparse matrix multiplication is traditionally performed in memory and scales to large matrices using the distributed memory of multiple nodes. In contrast, we scale sparse matrix multiplication beyond memory capacity by implementing sparse matrix dense matrix multiplication (SpMM) in a semi-external memory (SEM) fashion; i.e., we keep the sparse matrix on(More)
Gliomas are the most common type of primary brain tumors. Despite the improvement in current treatments for gliomas, including surgical resection, radiation, and chemotherapy, there has been very little progress in curing this kind of disease. Stat3 is a member of signal transducer and activator of transcription family. It plays an important role in(More)
Circadian rhythms of heart rate variability have been widely studied in recent years. However, most previous reports described such rhythms in terms of normalized units of the low- and high-frequency (LF and HF) spectral components. In this study, we analyzed circadian rhythms of spectral components in absolute units and found unexpected results in normal(More)
UNLABELLED Linking physiological pharmacokinetic models to models of the cardiovascular system requires knowledge of the sites in the body that mediate a drug's cardiovascular effects. We examined the role of the coronary concentrations of propofol. Nine sheep anesthetized with isoflurane (2%) were instrumented acutely for cardiovascular measurements. In a(More)
A recirculatory physiological model of the determinants of the myocardial concentrations of lignocaine after intravenous administration was developed in sheep and validated with the intention of analysing and predicting the outcome of altered dose regimens and various pathophysiological states on the initial myocardial concentrations of lignocaine. The(More)
We present a set-associative page cache for scalable parallelism of IOPS in multicore systems. The design eliminates lock contention and hardware cache misses by partitioning the global cache into many independent page sets, each requiring a small amount of metadata that fits in few processor cache lines. We extend this design with message passing among(More)
A canonical problem in graph mining is the detection of dense communities. This problem is exacerbated for a graph with a large order and size – the number of vertices and edges – as many community detection algorithms scale poorly. In this work we propose a novel framework for detecting active communities that consist of the most active vertices in massive(More)