We don’t have enough information about this author to calculate their statistics. If you think this is an error let us know.
Learn More
It is a very challenging work to classify the 86 billions of neurons in the human brain. The most important step is to get the features of these neurons. In this paper, we present a primal system to analyze and extract features from brain neurons. First, we make analysis on the original data of neurons in which one neuron contains six parameters: room type,(More)
Single-hidden-layer feedforward neural network (SLFN) is an effective model for data classification and regression. However, it has a very important defect that it is rather time-consuming to explore the training algorithm of SLFN. In order to shorten the learning time, a special non-iterative learning algorithm was proposed, named as extreme learning(More)
  • 1