Learn More
W e are writing as scientists and editors of leading peer-reviewed journals that have published important contributions in the study of endocrine disrupting chemicals (EDCs). By signing this editorial, we affirm that regulatory decisions on EDCs should be made based on the best available science and expertise that involves, among others, reproductive(More)
Human keratinocytes convert 25(OH)D(3) to hormonally active 1alpha,25(OH)(2)D(3) and respond to its antiproliferative/prodifferentiating action in vitro and in vivo. Levels and activity of 1alpha,25(OH)(2)D(3) are short-lived. 1alpha,25(OH)(2)D(3) induces 24-hydroxylase (CYP24) that rapidly metabolizes the hormone, yielding a cascade of side-chain oxidized(More)
Keratinocyte differentiation requires the sequential regulation of gene expression. We have explored the role of 1,25(OH)(2)D(3) and its receptor (VDR) in this process. VDR sequentially binds to coactivator complexes such as Vitamin D receptor interacting protein (DRIP) and steroid receptor coactivator (SRC) during differentiation. Different genes respond(More)
UNLABELLED Our goal was to determine total and directly measured free 25-hydroxy vitamin D (25(OH)D) serum levels in humans with a range of 25(OH)D levels and clinical conditions associated with low and high vitamin D binding protein levels. Serum samples and clinical data were collected from 106 subjects: 62 without cirrhosis or pregnancy, 24 cirrhotic(More)
Ca(2+) influx controls essential epidermal functions, including proliferation, differentiation, cell migration, itch, and barrier homeostasis. The Orai1 ion channel allows capacitive Ca(2+) influx after Ca(2+) release from the endoplasmic reticulum, and it has now been shown to modulate epidermal atrophy. These findings reveal new interactions among various(More)
  • 1