Novel Mode of Microbial Energy Metabolism: Organic Carbon Oxidation Coupled to Dissimilatory Reduction of Iron or Manganese
- D. Lovley, E. Phillips
- ChemistryApplied and Environmental Microbiology
- 1 June 1988
This is the first demonstration that microorganisms can completely oxidize organic compounds with Fe(III) or Mn(IV) as the sole electron acceptor and that oxidation of organic matter coupled to dissimilatory Fe( III), Mn( IV), or Mn (IV) reduction can yield energy for microbial growth.
Electricity Production by Geobacter sulfurreducens Attached to Electrodes
- D. R. Bond, D. Lovley
- BiologyApplied and Environmental Microbiology
- 1 March 2003
The results suggest that the effectiveness of microbial fuel cells can be increased with organisms such as G. sulfurreducens that can attach to electrodes and remain viable for long periods of time while completely oxidizing organic substrates with quantitative transfer of electrons to an electrode.
Humic substances as electron acceptors for microbial respiration
- D. Lovley, J. Coates, E. L. Blunt-Harris, E. Phillips, J. Woodward
- Environmental ScienceNature
- 28 September 1996
HUMIC substances are heterogeneous high-molecular-weight organic materials which are ubiquitous in terrestrial and aquatic environments. They are resistant to microbial degradation1 and thus are not…
Organic Matter Mineralization with Reduction of Ferric Iron in Anaerobic Sediments
- D. Lovley, E. Phillips
- ChemistryApplied and Environmental Microbiology
- 1 April 1986
Results indicate that iron reduction can outcompete methanogenic food chains for sediment organic matter when amorphous ferric oxyhydroxides are available in anaerobic sediments, and the transfer of electrons from organic matter to ferric iron can be a major pathway for organic matter decomposition.
Rapid Assay for Microbially Reducible Ferric Iron in Aquatic Sediments
- D. Lovley, E. Phillips
- Chemistry, Environmental ScienceApplied and Environmental Microbiology
- 1 July 1987
A newly developed chemical assay for microbially reducible iron based on the reduction of poorly crystalline ferric iron by hydroxylamine under acidic conditions provides a correction for the high concentrations of solid ferrous iron which may also be extracted from sediments with acid.
Extracellular electron transfer via microbial nanowires
- G. Reguera, K. McCarthy, T. Mehta, Julie S. Nicoll, M. Tuominen, D. Lovley
- BiologyNature
- 23 June 2005
Results indicate that the pili of G. sulfurreducens might serve as biological nanowires, transferring electrons from the cell surface to the surface of Fe(iii) oxides, indicating possibilities for other unique cell-surface and cell–cell interactions, and for bioengineering of novel conductive materials.
Electrode-Reducing Microorganisms That Harvest Energy from Marine Sediments
- D. R. Bond, D. Holmes, L. Tender, D. Lovley
- Environmental ScienceScience
- 18 January 2002
A specific enrichment of microorganisms of the family Geobacteraceae is reported on energy-harvesting anodes, and it is shown that these microorganisms can conserve energy to support their growth by oxidizing organic compounds with an electrode serving as the sole electron acceptor.
Microbial reduction of uranium
- D. Lovley, E. Phillips, Y. Gorby, E. Landa
- Environmental ScienceNature
- 1 April 1991
REDUCTION of the soluble, oxidized form of uranium, U(VI), to insoluble U(IV) is an important mechanism for the immobilization of uranium in aquatic sediments and for the formation of some uranium…
Stimulating the In Situ Activity of Geobacter Species To Remove Uranium from the Groundwater of a Uranium-Contaminated Aquifer
- Robert T. Anderson, H. Vrionis, D. Lovley
- Environmental ScienceApplied and Environmental Microbiology
- 1 October 2003
The results demonstrate that in situ bioremediation of uranium-contaminated groundwater is feasible but suggest that the strategy should be optimized to better maintain long-term activity of Geobacter species.
...
...