Share This Author
Viscous boundary layers for the Navier–Stokes equations with the Navier slip conditions
- D. Iftimie, F. Sueur
- Mathematics
- 2011
We tackle the issue of the inviscid limit of the incompressible Navier–Stokes equations when the Navier slip-with-friction conditions are prescribed on impermeable boundaries. We justify an…
Two Dimensional Incompressible Ideal Flow Around a Small Obstacle
- D. Iftimie, M. C. Lopes Filho, H. J. Nussenzveig Lopes
- Mathematics
- 22 March 2002
Abstract In this article we study the asymptotic behavior of incompressible, ideal, time-dependent two dimensional flow in the exterior of a single smooth obstacle when the size of the obstacle…
The 3D Navier-Stokes equations seen as a perturbation of the 2D Navier-Stokes equations
- D. Iftimie
- Mathematics
- 1999
On considere les equations de Navier-Stokes periodiques 3D et on prend la donnee initiale de la forme u 0 = v 0 +w 0 , ou v 0 ne depend pas de la troisieme variable. On demontre que, afin d'obtenir…
Two-dimensional incompressible viscous flow around a small obstacle
- D. Iftimie, M. L. Filho, H. N. Lopes
- Mathematics
- 6 January 2003
In this work we study the asymptotic behavior of viscous incompressible 2D flow in the exterior of a small material obstacle. We fix the initial vorticity ω0 and the circulation γ of the initial flow…
Inviscid limits for the Navier–Stokes equations with Navier friction boundary conditions
- D. Iftimie, G. Planas
- Mathematics
- 1 April 2006
We consider the Navier–Stokes equations with Navier friction boundary conditions and prove two results. First, in the case of a bounded domain we prove that weak Leray solutions converge (locally in…
Some Results on the Navier–Stokes Equations in Thin 3D Domains
- D. Iftimie, G. Raugel
- Mathematics
- 30 July 1999
Abstract We consider the Navier–Stokes equations on thin 3D domains Qe=Ω×(0, e), supplemented mainly with purely periodic boundary conditions or with periodic boundary conditions in the thin…
The resolution of the Navier-Stokes equations in anisotropic spaces
- D. Iftimie
- Mathematics
- 30 April 1999
In this paper we prove global existence and uniqueness for solutions of the 3-dimensional Navier-Stokes equations with small initial data in spaces which are Hdi in the i-th direction, d1 + d2 + d3 =…
Navier-Stokes equations in thin 3D domains with Navier boundary conditions
- D. Iftimie, G. Raugel, G. Sell
- Mathematics
- 2007
r. We consider the Navier-Stokes equations on a thin domain of the form Ω e = {x ∈ R 3 | x 1 , x 2 ∈ (0,1), 0 < x 3 < eg (x 1 , x 2 )} supplemented with the following mixed boundary conditions:…
Évolution de tourbillon à support compact
- D. Iftimie
- Physics
- 1999
© Journées Équations aux dérivées partielles, 1999, tous droits réservés. L’accès aux archives de la revue « Journées Équations aux dérivées partielles » (http://www.…
Asymptotics and stability for global solutions to the Navier-Stokes equations
- I. Gallagher, D. Iftimie, F. Planchon
- Mathematics
- 2003
On considere une solution forte et globale des equations de Navier-Stokes. On montre qu'elle se comporte comme une solution petite en temps grand. En combinant ce resultat asymptotique avec des…
...
...