• Publications
  • Influence
The Novel Melatonin Agonist Agomelatine (S20098) Is an Antagonist at 5-Hydroxytryptamine2C Receptors, Blockade of Which Enhances the Activity of Frontocortical Dopaminergic and Adrenergic Pathways
TLDR
In contrast to melatonin, agomelatine behaves as an antagonist at 5- HT2B and 5-HT2C receptors: blockade of the latter reinforces frontocortical adrenergic and dopaminergic transmission.
Differential Actions of Antiparkinson Agents at Multiple Classes of Monoaminergic Receptor. I. A Multivariate Analysis of the Binding Profiles of 14 Drugs at 21 Native and Cloned Human Receptor
TLDR
An innovative multivariate analysis revealed marked heterogeneity in binding profiles of antiparkinson agents at diverse receptors implicated in the etiology and/or treatment of Parkinson's disease.
Agonist and antagonist actions of yohimbine as compared to fluparoxan at α2‐adrenergic receptors (AR)s, serotonin (5‐HT)1A, 5‐HT1B, 5‐HT1D and dopamine D2 and D3 receptors. Significance for the
TLDR
The α2‐AR antagonist properties of yohimbine increase DA and NAD levels both alone and in association with fluoxetine, whereas fluparoxan selectively enhances hippocampal noradrenaline (NAD) turnover and enhances striatal dopamine turnover and suppresses striatal turnover of 5‐HT.
S33084, a novel, potent, selective, and competitive antagonist at dopamine D(3)-receptors: I. Receptorial, electrophysiological and neurochemical profile compared with GR218,231 and L741,626.
TLDR
S33084 is a novel, potent, selective, and competitive antagonist at hD(3)-receptors that tonically inhibit ascending dopaminergic pathways, although the latter may contribute to phasic suppression of DA release in frontal cortex.
Mirtazapine enhances frontocortical dopaminergic and corticolimbic adrenergic, but not serotonergic, transmission by blockade of α2‐adrenergic and serotonin2C receptors: a comparison with citalopram
TLDR
In contrast to citalopram, mirtazapine reinforces frontocortical dopaminergic and corticolimbic adrenergic, but not serotonergic, transmission, and reflects antagonist properties at α2A‐AR and 5‐HT2C receptors.
The role of dopamine D3 compared with D2 receptors in the control of locomotor activity: a combined behavioural and neurochemical analysis with novel, selective antagonists in rats
TLDR
The facilitatory influence of a “high” dose of PD128,907 upon locomotion is mediated by postsynaptic D2 receptors and, possibly, countered by their D3 counterparts, while selective blockade of D2 but not of D3 receptors alone suppresses motor function.
The "selective" dopamine D1 receptor antagonist, SCH23390, is a potent and high efficacy agonist at cloned human serotonin2C receptors
TLDR
SCH23390 is a potent and high efficacy agonist at h5-HT2C receptors and may contribute to its functional properties both in animals and in humans.
Differential Actions of Antiparkinson Agents at Multiple Classes of Monoaminergic Receptor. III. Agonist and Antagonist Properties at Serotonin, 5-HT1 and 5-HT2, Receptor Subtypes
TLDR
Antiparkinson agents display markedly different patterns of agonist and antagonist properties at multiple 5-HT receptor subtypes, although all show modest (agonist) activity at5-HT1A sites, and their contrasting actions at 5-ht2A and 5- HT2C sites may be of particular significance to their functional profiles in vivo.
Triptolide is an inhibitor of RNA polymerase I and II–dependent transcription leading predominantly to down-regulation of short-lived mRNA
TLDR
It is concluded that triptolide is an original pharmacologic inhibitor of RNA polymerase activity, affecting indirectly the transcription machinery, leading to a rapid depletion of short-lived mRNA, including transcription factors, cell cycle regulators, and the oncogenes MYC and Src.
...
...