Learn More
The cytoplasmic polyadenylation element-binding protein (CPEB) has been characterized in Xenopus laevis as a translational regulator. During the early development, it behaves first as an inhibitor and later as an activator of translation. In mammals, its closest homologue is CPEB1 for which two isoforms, short and long, have been described. Here we describe(More)
Defects in myosin VIIa, harmonin (a PDZ domain protein), cadherin 23, protocadherin 15 and sans (a putative scaffolding protein), underlie five forms of Usher syndrome type I (USH1). Mouse mutants for all these proteins exhibit disorganization of their hair bundle, which is the mechanotransduction receptive structure of the inner ear sensory cells, the(More)
Usher syndrome type IIa (USH2A) combines moderate to severe congenital hearing impairment and retinitis pigmentosa. It is the most common genetic form of USH. USH2A encodes usherin, which was previously defined as a basement membrane protein. A much larger USH2A transcript predicted to encode a transmembrane (TM) isoform was recently reported. Here, we(More)
The kinetics of pre-mRNA processing in living cells is poorly known, preventing a detailed analysis of the regulation of these reactions. Using tetracycline-regulated promoters we performed, during a transcriptional induction, a complete analysis of the maturation of two cellular mRNAs, those for LT-alpha and beta-globin. In both cases, splicing was(More)
H earing impairment is a common and highly heterogeneous sensory disorder. Genetic causes are thought to be responsible for more than 60% of the cases in developed countries. In the majority of cases, non-syndromic hearing impairment is inherited in an autosomal recessive pattern. Thirty eight different loci and 20 genes for autosomal recessive(More)
Several lines of evidence indicate that very large G-protein-coupled receptor 1 (Vlgr1) makes up the ankle links that connect the stereocilia of hair cells at their base. Here, we show that the transmembrane protein usherin, the putative transmembrane protein vezatin, and the PDZ (postsynaptic density-95/Discs large/zona occludens-1) domain-containing(More)
Prelingual non-syndromic (isolated) deafness is the most frequent hereditary sensory defect. In >80% of the cases, the mode of transmission is autosomal recessive. To date, 14 loci have been identified for the recessive forms (DFNB loci). For two of them, DFNB1 and DFNB2, the genes responsible have been characterized; they encode connexin 26 and myosin(More)
The gene encoding human myosin VIIA is responsible for Usher syndrome type III (USH1B), a disease which associates profound congenital sensorineural deafness, vestibular dysfunction, and retinitis pigmentosa. The reconstituted cDNA sequence presented here predicts a 2215 amino acid protein with a typical unconventional myosin structure. This protein is(More)
Usher syndrome type I (USH1) is the most frequent cause of hereditary deaf-blindness in humans. Seven genetic loci (USH1A-G) have been implicated in this disease to date, and four of the corresponding genes have been identified: USH1B, C, D and F. We carried out fine mapping of USH1G (chromosome 17q24-25), restricting the location of this gene to an(More)
The whirler mouse mutant (wi) does not respond to sound stimuli, and detailed ultrastructural analysis of sensory hair cells in the organ of Corti of the inner ear indicates that the whirler gene encodes a protein involved in the elongation and maintenance of stereocilia in both inner hair cells (IHCs) and outer hair cells (OHCs). BAC-mediated transgene(More)