Learn More
A 167-processor computational platform consists of an array of simple programmable processors capable of per-processor dynamic supply voltage and clock frequency scaling, three algorithm-specific processors, and three 16 KB shared memories; and is implemented in 65 nm CMOS. All processors and shared memories are clocked by local fully independent,(More)
An array of simple programmable processors is implemented in 0.18 mum CMOS and contains 36 asynchronously clocked independent processors. Each processor occupies 0.66 and is fully functional at a clock rate of 520-540 MHz at 1.8 V and over 600 MHz at 2.0 V. Processors dissipate an average of 32 mW under typical conditions at 1.8 V and 475 MHz, and 2.4 mW at(More)
A 167-processor 65 nm computational platform well suited for DSP, communication, and multimedia workloads contains 164 programmable processors with dynamic supply voltage and dynamic clock frequency circuits, three algorithm-specific processors, and three 16 KB shared memories, all clocked by independent oscillators and connected by configurable(More)
This paper reports the design and software implementation of a real-time digital baseband receiver compliant with the IEEE 802.11a standard on the AsAP2 platform, a DSP chip multiprocessor. The computational platform consists of an array of programmable processors and configurable accelerators interconnected in a 2-D mesh network that are well matched for(More)
  • 1