Learn More
The whole-cell voltage-clamp technique employing electrolyte-filled micro-pipette suction electrodes is widely used to investigate questions requiring an electrophysiological approach. With this technique, the ionic composition of the cytosol is assumed to be strongly influenced (as result of diffusion) by the ionic composition of the solution contained in(More)
Experience with frequency domain analysis over the past two decades strongly suggests that it represents a unique, noninvasive tool for achieving a more precise assessment of autonomic function in both the experimental and clinical settings. Available studies indicate that the significance of the HF component is far better understood than that of the lower(More)
Single channel recording techniques were used to study acetylcholine (ACh)-sensitive K+ channel activity in human atrial myocytes isolated from specimens obtained during corrective cardiac surgery. Under conditions of cell-attached patch, the presence of ACh in the patch pipette activated K+ channels. Single channel activity occurred in periodic bursts. The(More)
Na-K pump current (Ipump) is a function of the intracellular Na+ concentration [( Na+]i). We examined the quantitative relationship between Ipump and [Na+]i in isolated guinea pig ventricular myocytes under steady-state conditions. [Na+]i was controlled and "clamped" at several selected concentrations using wide-tipped pipette microelectrodes, and membrane(More)
Intracellular potassium activity in guinea pig left atria was measured using potassium ion-selective microelectrodes and conventional microelectrodes. The effects of extracellular potassium concentration and acetylcholine on both intracellular potassium activity and the relationship between the resting membrane potential and the potassium equilibrium(More)
  • 1