D. Rangaprakash

Learn More
Automated recognition and classification of brain diseases are of tremendous value to society. Attention deficit hyperactivity disorder (ADHD) is a diverse spectrum disorder whose diagnosis is based on behavior and hence will benefit from classification utilizing objective neuroimaging measures. Toward this end, an international competition was conducted(More)
Using resting-state functional magnetic resonance imaging, we test the hypothesis that subjects with post-traumatic stress disorder (PTSD) are characterized by reduced temporal variability of brain connectivity compared to matched healthy controls. Specifically, we test whether PTSD is characterized by elevated static connectivity, coupled with decreased(More)
Clustering is one of the most important methods for organizing database into groups. In this paper, Ordering Points To Identify Clustering Structure (OPTICS) algorithm has been used to perform clustering of functional Magnetic Resonance Imaging (fMRI) data. Dynamic functional connectivity features on fMRI data (ADNI database) obtained from subjects with(More)
It is increasingly being recognized that resting state brain connectivity derived from functional magnetic resonance imaging (fMRI) data is an important marker of brain function both in healthy and clinical populations. Though linear correlation has been extensively used to characterize brain connectivity, it is limited to detecting first order(More)
Real world biological systems such as the human brain are inherently nonlinear and difficult to model. However, most of the previous studies have either employed linear models or parametric nonlinear models for investigating brain function. In this paper, a novel application of a nonlinear measure of phase synchronization based on recurrences, correlation(More)
Wrist pulse signals contain important information about the health of a person and hence diagnosis based on pulse signals has assumed great importance. In this paper we demonstrate the efficacy of a two term Gaussian model to extract information from pulse signals. Results have been obtained by conducting experiments on several subjects to record wrist(More)
Wrist pulse signal contains more important information about the health status of a person and pulse signal diagnosis has been employed in oriental medicine since very long time. In this paper we have used signal processing techniques to extract information from wrist pulse signals. For this purpose we have acquired radial artery pulse signals at wrist(More)
It is well known that wrist pulse signals contain information about the status of health of a person and hence diagnosis based on pulse signals has assumed great importance since long time. In this paper the efficacy of signal processing techniques in extracting useful information from wrist pulse signals has been demonstrated by using signals recorded(More)
OBJECTIVES Military service members risk acquiring posttraumatic stress disorder (PTSD) and mild-traumatic brain injury (mTBI), with high comorbidity. Owing to overlapping symptomatology in chronic mTBI or postconcussion syndrome (PCS) and PTSD, it is difficult to assess the etiology of a patient's condition without objective measures. Using resting-state(More)