Learn More
For the first time, we report femtosecond pulses from a passive single-section InAs/InP quantum-dot (QD) mode-locked laser (MLL) with the active length of 456 microm and ridge width of 2.5 microm at the C-band wavelength range. Without any external pulse compression, the transform-limited Gaussian-pulses are generated at the 92 GHz repetition rate with the(More)
The distribution and morphological characteristics of monoamine (MA)-containing neuronal somata in the brain stem of kittens and of adult cats were studied by means of the Falck-Hillarp histofluorescence method. This investigation has shown, among other things, that in the midbrain of the cat the catecholamine (CA) perikarya are chiefly confined to the pars(More)
Recently we performed a numerical investigation of antireflection coatings that reduce significantly the reflection over a wide range of wavelengths and angles of incidence, and we proposed some experiments to demonstrate their feasibility. We provide a theoretical description of omnidirectional antireflection coatings that are effective over a wide range(More)
A perfect antireflection (AR) coating would remove completely the reflection from an interface between two media for all wavelengths, polarizations, and angles of incidence. The degree to which this can be achieved is investigated numerically. It is shown that wideband solutions can be found provided that layers can be deposited with refractive indices that(More)
We present experimental and theoretical results of label-free molecular sensing using the transverse magnetic mode of a 0.22 mum thick silicon slab waveguide with a surface grating implemented in a guided mode resonance configuration. Due to the strong overlap of the evanescent field of the waveguide mode with a molecular layer attached to the surface,(More)
There is a large demand for Organic Light-Emitting Displays (OLEDs) with higher contrast, particularly for outdoor applications. We show that lowering the reflectance of OLEDs, which is required for increasing the contrast, can also lead to a reduction of their efficiency when a small microcavity effect is not maintained in their structure. We describe in(More)
An ultrawide-bandwidth, superluminescent light-emitting diode (SLED) utilizing multiple layers of dots of tuned height is reported. Due to thermal effect, the superluminescent phenomenon is observed only under pulse-mode operation. The device exhibits a 3 dB bandwidth of 190 nm with central wavelength of 1020 nm under continuous-wave (cw) conditions. The(More)
We report on the generation of dual-wavelength self-mode-locking pulses from an InP-based quantum dot laser. The demonstrated device operates simultaneously at both 1543.7 and 1571.7 nm and has a repetition rate of 92.5 GHz. The pulse width is below 960 fs, and the average power coupled to a cleaved single-mode fiber is nearly 9 mW at a current bias of 60(More)
To be legible in high-ambient light conditions, organic light-emitting-diode displays should be optically designed to have a minimal reflectance without significantly affecting their overall efficiency. We demonstrate the use of an anode consisting of a partially absorbing metal layer and a multilayer distributed Bragg reflector to simultaneously absorb(More)