Learn More
We present an improved and extended version of our coarse grained lipid model. The new version, coined the MARTINI force field, is parametrized in a systematic way, based on the reproduction of partitioning free energies between polar and apolar phases of a large number of chemical compounds. To reproduce the free energies of these chemical building blocks,(More)
Since the identification of the CF gene, less than 3 years ago, progress in analysing the function of its product, the cystic fibrosis transmembrane conductance regulator (CFTR), has been remarkable. It is now clear that CFTR functions as a small conductance chloride channel in epithelial membranes. However, many other questions remain unanswered. How does(More)
Alamethicin is an antimicrobial peptide that forms stable channels with well-defined conductance levels. We have used extended molecular dynamics simulations of alamethicin bundles consisting of 4, 5, 6, 7, and 8 helices in a palmitoyl-oleolyl-phosphatidylcholine bilayer to evaluate and analyze channel models and to link the models to the experimentally(More)
The free energy of partitioning an amino acid side chain from water into the cell membrane is one of the critical parameters for understanding and predicting membrane protein stability, and understanding membrane protein function. Transmembrane segments are generally very hydrophobic, but may contain hydrophilic residues that are important for the structure(More)
Lipid peroxidation plays an important role in cell membrane damage. We investigated the effect of lipid peroxidation on the properties of 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine (PLPC) lipid bilayers using molecular dynamics simulations. We focused on four main oxidation products of linoleic acid with either a hydroperoxide or an aldehyde(More)
Multinanosecond molecular dynamics simulations of gramicidin A embedded in a dimyristoylphosphatidylcholine bilayer show a remarkable structural stability for both experimentally determined conformations: the head-to-head helical dimer and the double helix. Water permeability was found to be much higher in the double helical conformation, which is explained(More)
Lipid adhesion forces can be measured using several experimental techniques, but none of these techniques provide insight on the atomic level. Therefore, we performed extensive nonequilibrium molecular dynamics simulations of a phospholipid membrane in the liquid-crystalline phase out of which individual lipid molecules were pulled. In our method, as an(More)
mu-Conotoxin GIIIA (mu-CTX) is a high-affinity ligand for the outer vestibule of selected isoforms of the voltage-gated Na(+) channel. The detailed bases for the toxin's high affinity binding and isoform selectivity are unclear. The outer vestibule is lined by four pore-forming (P) loops, each with an acidic residue near the mouth of the vestibule. mu-CTX(More)
In this review we describe the state-of-the-art of computer simulation studies of lipid membranes. We focus on collective lipid-lipid and lipid-protein interactions that trigger deformations of the natural lamellar membrane state, showing that many important biological processes including self-aggregation of membrane components into domains, the formation(More)