Learn More
The ratio of the electric and magnetic form factors of the proton G(E(p))/G(M(p)), which is an image of its charge and magnetization distributions, was measured at the Thomas Jefferson National Accelerator Facility (JLab) using the recoil polarization technique. The ratio of the form factors is directly proportional to the ratio of the transverse to(More)
The COMPASS experiment at the CERN SPS has studied the diffractive dissociation of negative pions into the π- π- π+ final state using a 190  GeV/c pion beam hitting a lead target. A partial wave analysis has been performed on a sample of 420,000 events taken at values of the squared 4-momentum transfer t' between 0.1 and 1  GeV2/c2. The well-known(More)
The instrumentation in Hall A at the Thomas Jefferson National Accelerator Facility was designed to study electro-and photo-induced reactions at very high luminosity and good momentum and angular resolution for at least one of the reaction products. The central components of Hall A are two identical high resolution spectrometers, which allow the vertical(More)
We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from protons. Significant contributions to this asymmetry could arise from the contributions of strange form factors in the nucleon. The measured asymmetry is A = −15.05 ± 0.98(stat) ± 0.56(syst) ppm at the kinematic point θ lab = 12.3 • and Q 2 =(More)
First measurements of the Collins and Sivers asymmetries of charged hadrons produced in deep-inelastic scattering of muons on a transversely polarized 6LiD target are presented. The data were taken in 2002 with the COMPASS spectrometer using the muon beam of the CERN SPS at 160 GeV/c. The Collins asymmetry turns out to be compatible with zero, as does the(More)
A major advance in accurate electron beam polarization measurement has been achieved at Jlab Hall A with a Compton polarimeter based on a Fabry-Perot cavity photon beam amplifier. At an electron energy of 4.6 GeV and a beam current of 40 µA, a total relative uncertainty of 1.5% is typically achieved within 40 min of data taking. Under the same conditions(More)
We have measured the neutron spin asymmetry A(n)(1) with high precision at three kinematics in the deep inelastic region at x=0.33, 0.47, and 0.60, and Q(2)=2.7, 3.5, and 4.8 (GeV/c)(2), respectively. Our results unambiguously show, for the first time, that A(n)(1) crosses zero around x=0.47 and becomes significantly positive at x=0.60. Combined with the(More)
We measured the cross section and response functions for the quasielastic 16O(e,e'p) reaction for missing energies 25< or =E(m)< or =120 MeV at missing momenta P(m)< or =340 MeV/c. For 25<E(m)<50 MeV and P(m) approximately 60 MeV/c, the reaction is dominated by a single 1s(1/2) proton knockout. At larger P(m), the single-particle aspects are increasingly(More)
We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from 4He at an average scattering angle <theta(lab)> = 5.7 degrees and a four-momentum transfer Q2 = 0.091 GeV2 . From these data, for the first time, the strange electric form factor of the nucleon G(E)s can be isolated. The measured asymmetry of(More)
We report a virtual Compton scattering study of the proton at low c.m. energies. We have determined the structure functions P(LL)-P(TT)/epsilon and P(LT), and the electric and magnetic generalized polarizabilities (GPs) alpha(E)(Q2) and beta(M)(Q2) at momentum transfer Q(2)=0.92 and 1.76 GeV2. The electric GP shows a strong falloff with Q2, and its global(More)