D Neise

Learn More
The First G-APD Cherenkov Telescope (FACT) is designed to detect cosmic gamma-rays with energies from several hundred GeV up to about 10 TeV using the Imaging Atmospheric Cherenkov Technique. In contrast to former or existing telescopes, the camera of the FACT telescope is comprised of solid-state Geiger-mode Avalanche Photodiodes (G-APD) instead of(More)
The p90 ribosomal S6 kinase (RSK) family is a group of highly conserved Ser/Thr kinases that promote cell proliferation, growth, motility and survival. As they are almost exclusively activated downstream of extracellular signal-regulated kinases 1 and 2 (ERK1/2), therapeutic intervention by RSK inhibition is less likely to produce such severe side effects(More)
Geiger-mode Avalanche Photodiodes (G-APD) bear the potential to significantly improve the sensitivity of Imaging Air Cherenkov Telescopes (IACT). We are currently building the First G-APD Cherenkov Telescope (FACT) by refurbishing an old IACT with a mirror area of 9.5 square meters and construct a new, fine pixelized camera using novel G-APDs. The main goal(More)
We intend to set up an imaging air Cherenkov telescope with low cost, but high performance design for remote operation. The goal is to dedicate this γ-ray telescope to long-term monitoring observations of nearby, bright blazars at very high energies (VHE). We will (i) search for orbital modulation of the blazar emission due to supermassive black hole(More)
The First G-APD Cherenkov telescope (FACT) is dedicated to monitor bright TeV blazars in the northern sky. The use of silicon photon detectors allows for a larger duty cycle, which results in a huge amount of collected data (800 GB/night). In order to satisfy its monitoring purpose, changes in the flux of the observed sources have to be registered without(More)
The First G-APD Cherenkov Telescope (FACT) is an Imaging Air Cherenkov Telescope located on the Canary Island of La Palma. It is the first of its kind which uses Geiger-mode Avalanche Photo Diodes (G-APDs) as photosensors to detect the Cherenkov radiation emitted from secondary particles in a high-energy gamma-ray air shower. A new analysis chain has been(More)
The First G-APD Cherenkov Telescope (FACT) is the first operational telescope of its kind, employing a camera equipped with silicon photon detectors (G-APD aka. SiPM). SiPMs have a high photon detection efficiency (PDE), while being more robust to bright light conditions than the commonly used photo-multiplier tubes. This technology has allowed us to(More)
Within the FACT project, we construct a new type of camera based on Geiger-mode avalanche photodiodes (G-APDs). Compared to photomultipliers, G-APDs are more robust, need a lower operation voltage and have the potential of higher photon-detection efficiency and lower cost, but were never fully tested in the harsh environments of Cherenkov telescopes. The(More)
The First G-APD Cherenkov Telescope (FACT) is an Imaging Air Cherenkov Telescope (IACT) located on the Canary Island of La Palma. Its goal is to provide long term monitoring of cosmic objects like Active Galactic Nuclei. FACT is the first IACT to use Silicon Photomultipliers instead of conventional Photo Multiplier Tubes. Therefore studying the detector(More)
  • 1