Learn More
Thèse dirigée par Klaus HASSELBACH préparée au sein du Institut Néel dans l'École Doctorale Physique Microscopie à micro-SQUID: étude de la coexistence de la supraconductivité et du ferromagnétisme dans le composé UCoGe Thèse soutenue publiquement le 15/02/2011, devant le jury composé de : Je tiens à remercier les autres thésards, notamment Germain (qui m'a(More)
Coherent x-ray diffractive imaging is a powerful method for studies on nonperiodic structures on the nanoscale. Access to femtosecond dynamics in major physical, chemical, and biological processes requires single-shot diffraction data. Up to now, this has been limited to intense coherent pulses from a free electron laser. Here we show that laser-driven(More)
Magnetization reversal in magnetic particles is one of the fundamental issues in magnetic data storage. Technological improvements require the understanding of dynamical magnetization reversal processes at nanosecond time scales. New strategies are needed to overcome current limitations. For example, the problem of thermal stability of the magnetization(More)
We present phase coherence time measurements in quasi-one-dimensional Ag wires doped with Fe Kondo impurities of different concentrations n_{s}. Because of the relatively high Kondo temperature T_{K} approximately 4.3 K of this system, we are able to explore a temperature range from above T_{K} down to below 0.01T_{K}. We show that the magnetic contribution(More)
We present measurements of the phase coherence time taupsi in quasi-one-dimensional Au/Fe Kondo wires and compare the temperature dependence taupsi of with a recent theory of inelastic scattering from magnetic impurities [Phys. Rev. Lett. 93, 107204 (2004)10.1103/PhysRevLett.93.107204]. A very good agreement is obtained for temperatures down to 0.2T(K).(More)
We have determined the finite temperature coherence length of edge states in the integer quantum Hall effect regime. This was realized by measuring the visibility of electronic Mach-Zehnder interferometers of different sizes, at filling factor 2. The visibility shows an exponential decay with the temperature. The characteristic temperature scale is found(More)
Using a new micro-SQUID setup, we investigate magnetic anisotropy in a single 1000-atom cobalt cluster. This system opens new fields in the characterization and understanding of the origin of magnetic anisotropy in such nanoparticles. For this purpose, we report three-dimensional switching field measurements performed on a 3 nm cobalt cluster embedded in a(More)
We investigate the magneto-transport properties of epitaxial graphene single-layer on 4H-SiC(0001), grown by atmospheric pressure graphitization in Ar, followed by H2 intercalation. We directly demonstrate the importance of saturating the Si dangling bonds at the graphene/SiC(0001) interface to achieve high carrier mobility. Upon successful Si dangling(More)
Staircaselike hysteresis loops of the magnetization of a LiY0.998Ho0.002F4 single crystal are observed at subkelvin temperatures and low field sweep rates. This behavior results from quantum dynamics at avoided level crossings of the energy spectrum of single Ho3+ ions in the presence of hyperfine interactions. Enhanced quantum relaxation in constant(More)
the date of receipt and acceptance should be inserted later Abstract. We present a detailed model describing the effects of wire corrugation on the trapping potential experienced by a cloud of atoms above a current carrying micro wire. We calculate the distortion of the current distribution due to corrugation and then derive the corresponding roughness in(More)