Learn More
Sodium homeostasis in terrestrial and freshwater vertebrates is controlled by the corticosteroid hormones, principally aldosterone, which stimulate electrogenic Na+ absorption in tight epithelia. Although aldosterone is known to increase apical membrane Na+ permeability in target cells through changes in gene transcription, the mechanistic basis of this(More)
The epithelial Na(+) channel (ENaC) plays an essential role in the regulation of whole body Na(+) balance and blood pressure. The cell surface expression of this channel, a complex of three subunits (alpha, beta and gamma ENaC), has been shown to be regulated by hormones such as aldosterone and vasopressin and by intracellular signaling, including(More)
Dysregulation of the serotonergic system and abnormalities of the hypothalamic-pituitary-adrenal axis function have been implicated to be involved in neuropsychiatric disorders. Serotonin-1A receptors have been shown to be suppressed by corticosteroid hormones in a variety of animal studies. This effect may play a central role in the pathophysiology of(More)
The epithelial Na+ channel (ENaC) constitutes the rate-limiting step for Na+ transport across tight epithelia and is the principal target of hormonal regulation, particularly by insulin and mineralocorticoids. Recently, the serine-threonine kinase (SGK) was identified as a rapidly mineralocorticoid-responsive gene, the product of which stimulates(More)
Aldosterone controls sodium reabsorption and potassium secretion in the aldosterone-sensitive distal nephron (ASDN). Although clearance measurements have shown that aldosterone induces these transports within 30--60 min, no early effects have been demonstrated in vivo at the level of the apical epithelial sodium channel (ENaC), the main effector of this(More)
Aldosterone plays a major role in regulating sodium and potassium flux in epithelial tissues such as kidney and colon. Recent evidence suggests that serum- and glucocorticoid-regulated kinase (SGK) is induced by aldosterone and acts as a key mediator of aldosterone action in epithelial tissues. Induction of SGK messenger RNA (mRNA) has previously been shown(More)
The mineralocorticoid and glucocorticoid receptors (MR and GR, respectively) are members of the intracellular receptor superfamily that bind as homodimers to the same hormone response elements (HREs). Physiological evidence suggests that MR and GR interact with each other in cells that express both receptors, implying that they might directly interact in(More)
A6 cells, derived from Xenopus laevis renal tubule, form a high-resistance ion-transporting monolayer when grown on permeable supports and can generate a short-circuit current (SCC) that is stimulated by high levels of the mineralocorticoid aldosterone. Surprisingly, A6 SCC is more responsive to glucocorticoids than to mineralocorticoids, suggesting the(More)
The androgen and glucocorticoid hormones elicit divergent and often opposing effects in cells, tissues, and animals. A wide range of physiological and molecular biological evidence suggests that the receptors that mediate these effects, the androgen and glucocorticoid receptors (AR and GR, respectively), influence each other's transcriptional activity. We(More)
Glucocorticoids (GCs) are critical to learning and memory, in large part because of their actions in the hippocampus. Chronic high levels of GCs have profound effects on hippocampal structure and function and can even result in irreversible neurodegeneration. Hippocampal GC actions are mediated by intracellular receptors that modulate the transcription of(More)