Learn More
An indigenous mining algal-microbial consortium was immobilised within a laboratory-scale photo-rotating biological contactor (PRBC) that was used to investigate the potential for heavy metal removal from acid mine drainage (AMD). The microbial consortium, dominated by Ulothrix sp., was collected from the AMD at the Sar Cheshmeh copper mine in Iran. This(More)
Variation in reproductive success among 26 communal groups in a sampled population of Plocepasser mahali (White-browed Sparrow Weaver) was studied over a 3-year period in Zambia, Africa. Potential determinants of reproductive success, namely resource variables and group size, were examined and statistically analyzed for their significance in explaining(More)
The key role played by turbulence in the environment of plankton and larval fish populations has become appreciated in recent years. In particular, the turbulent enhancement of encounter rates between different species of microorganisms, either swimming or passively advected by the flow, is well established. However, most of the current modelling approaches(More)
It is a well-established fact that encounter rates between different species of planktonic microorganism, either swimming, or passively advected by the flow, are enhanced in the presence of turbulence. However, due to the complexity of the various calculations involved, current encounter rate theories are based on a number of simplifying approximations,(More)
The importance of predation in regulating the size of competing plankton and larval fish populations has long been appreciated. However, it has only recently been recognized that turbulence must have a significant influence on predator-prey interactions because most rival species of microorganisms co-exist in oceanic or fast moving fresh water flows.(More)
This paper presents an extension to previously published work which studied encounter rates of planktonic predators with restricted perception fields, to examine the related problems of prey capture and predation rates. Small-scale turbulence influences planktonic predation in two ways: the extra energy of the flow enhances the number of encounter events(More)
The concentration of phytoplankton in the sea is affected by biological processes, such as growth/mortality rates, predatory zooplankton concentrations and nutrient levels. Phytoplankton concentrations are also influenced by physical processes, in particular the mixing properties of the local fluid environment. On planktonic scales (approximately 10-1000(More)
  • 1