Learn More
We have developed a simple and efficient transformation system for the agaric fungus, Coprinus cinereus. Protoplasts were prepared from asexual spores that harbor one or two mutations in the structural gene for tryptophan synthetase. The protoplasts can be stably transformed using the cloned Coprinus gene at a frequency of 1 in 10(4) viable protoplasts. A(More)
The Cancer Gene Anatomy Project database of the National Cancer Institute has thousands of expressed sequences, both known and novel, in the form of expressed sequence tags (ESTs). These ESTs, derived from diverse normal and tumor cDNA libraries, offer an attractive starting point for cancer gene discovery. Using a data-mining tool called Digital(More)
We utilized a cloned gene (TRP5) encoding tryptophan synthetase (TSase) from Saccharomyces cerevisiae to identify and clone the corresponding gene (TRP1) from the basidiomycete Coprinus cinereus. The primary nucleotide (nt) sequence of this gene was determined and compared to sequences from other filamentous fungi, as well as to other genes coding for(More)
We examined the influence of DNA form and size on the arrangement and genomic location of transforming DNA sequences in the basidiomycete Coprinus cinereus. Protoplasts with either single or double mutations in the tryptophan synthetase (TRP1) gene were transformed with cloned copies of this gene which contained only a single DNA strand, contained a(More)
The basidiomycete Coprinus cinereus offers many advantages for molecular analyses of meiosis. Fruiting body development is highly synchronous, and chromosome behaviour can be visualized using the light microscope. Furthermore, the small genome size (3.7 X 10(7) bp/haploid nucleus) facilitates molecular cloning procedures, and genetic characterization is(More)
Deoxyribonuclease II has been purified through five fractionation steps from the human lymphoblast cell line K562. Isolation included DEAE-cellulose and heparin-agarose chromatography followed by fractionation on Mono-S, Mono-Q and Superose-12 FPLC columns. In an extension of previous studies, deoxyribonuclease II was found to introduce a much higher(More)
The methionine sulfoxide reductases MsrA and MsrB reduce Met(O) to Met in epimer-specific fashion. In Drosophila, the major ecdysone induced protein is MsrA, which is regulated by the EcR-USP complex. We tested Kc cells for induction of MsrA, MsrB, EcR, and CAT by ecdysone and found that MsrA and the EcR were induced by ecdysone, but MsrB and CAT were not.(More)
The CYC7-H3 mutation is a 5-kb deletion that causes overproduction of iso-2 cytochrome c. Unlike most mutations in yeast, the CYC7-H3 mutation is preferentially lost when it is involved in a gene conversion event. We have shown that cloned copies of CYC7-H3 DNA that are inserted into the yeast genome are associated with a high frequency of recombination and(More)
  • 1