D. L. Moehring

Learn More
Quantum information science involves the storage, manipulation and communication of information encoded in quantum systems, where the phenomena of superposition and entanglement can provide enhancements over what is possible classically. Large-scale quantum information processors require stable and addressable quantum memories, usually in the form of fixed(More)
We observe violation of a Bell inequality between the quantum states of two remote Yb+ ions separated by a distance of about 1 m with the detection loophole closed. The heralded entanglement of two ions is established via interference and joint detection of two emitted photons, whose polarization is entangled with each ion. The entanglement of remote qubits(More)
We introduce lossless state detection of trapped neutral atoms based on cavity-enhanced fluorescence. In an experiment with a single 87Rb atom, a hyperfine-state-detection fidelity of 99.4% is achieved in 85  μs. The quantum bit is interrogated many hundreds of times without loss of the atom while a result is obtained in every readout attempt. The fidelity(More)
Trapped atomic ions are among the most attractive implementations of quantum bits for applications in quantuminformation processing, owing to their long trapping lifetimes and long coherence times. Although nearby trapped ions can be entangled through their Coulomb-coupled motion, it seems more natural to entangle remotely located ions through a coupling(More)
Entangled quantum states, at the heart of quantuminformation processing, are notoriously difficult to generate and control. Generating entangled states becomes dramatically simpler when the entanglement operations are allowed to succeed with only a finite perhaps small probability, as long as it is known when the operations succeed 1–5 . If entangling gates(More)
An outstanding goal in quantum information science is the faithful mapping of quantum information between a stable quantum memory and a reliable quantum communication channel. This would allow, for example, quantum communication over remote distances, quantum teleportation of matter and distributed quantum computing over a 'quantum internet'. Because(More)
We report the measurement of a Bell inequality violation with a single atom and a single photon prepared in a probabilistic entangled state. This is the first demonstration of such a violation with particles of different species. The entanglement characterization of this hybrid system may also be useful in quantum information applications.
An experiment is performed where a single rubidium atom trapped within a high-finesse optical cavity emits two independently triggered entangled photons. The entanglement is mediated by the atom and is characterized both by a Bell inequality violation of S=2.5, as well as full quantum-state tomography, resulting in a fidelity exceeding F=90%. The(More)
We present the design, fabrication and experimental implementation of surface ion traps with Y-shaped junctions. The traps are designed to minimize the pseudopotential variations in the junction region at the symmetric intersection of three linear segments. We experimentally demonstrate robust linear and junction shuttling with greater than 106 round-trip(More)