Learn More
STE2 encodes a component of the S. cerevisiae alpha-pheromone receptor that is essential for induction of physiological changes associated with mating. Analysis of C-terminal truncation mutants of STE2 demonstrated that the essential sequences for ligand binding and signal transduction are included within a region containing seven putative transmembrane(More)
Mutations gef1, stp22, STP26, and STP27 in Saccharomyces cerevisiae were identified as suppressors of the temperature-sensitive alpha-factor receptor (mutation ste2-3) and arginine permease (mutation can1(ts)). These suppressors inhibited the elimination of misfolded receptors (synthesized at 34 degrees C) as well as damaged surface receptors (shifted from(More)
The peptide pheromone, alpha-factor, was found to elicit down regulation of receptor sites on yeast a cell targets. Cellular uptake of alpha-factor accompanied the loss of receptor sites. Receptor-deficient a cells bearing a deletion of the STE2 gene were unable to internalize alpha-factor. Cultures were found to reaccumulate receptor sites following the(More)
The STE5 gene encodes an essential element of the pheromone response pathway which is known to act either after the G subunit encoded by the STE4 gene or at the same step. Mutations in STE5, designated STE5Hyp, that partially activate the pathway in the absence of pheromone were isolated. One allele (STE5Hyp-2) was shown to cause a single amino acid(More)
When Saccharomyces cerevisiae a cells bind alpha-factor pheromone, the ligand is internalized and its binding sites are lost from the cell surface in a time-, energy-, and temperature-dependent manner. This report presents direct evidence for alpha-factor-induced internalization of cell surface receptors. First, membrane fractionation on Renografin density(More)
The division cycle of yeast a cells is inhibited by alpha-factor. Haploid a cells were found to bind 35S-labeled alpha-factor, whereas haploid alpha cells and diploid a/alpha cells showed little binding. The association of alpha-factor with a cells was reversible upon dilution. Unlabeled alpha-factor competed for binding of 35S-alpha-factor; the(More)
alpha-Factor receptors from Saccharomyces cerevisiae are G-protein-coupled receptors containing seven transmembrane segments. Receptors solubilized with the detergent n-dodecyl beta-D-maltoside were found to sediment as a single 8S species in glycerol density gradients. When the membranes from cells coexpressing two differentially tagged receptors were(More)
Binding of the alpha-factor pheromone to its G-protein-coupled receptor (encoded by STE2) activates the mating pathway in MATa yeast cells. To investigate whether specific interactions between the receptor and the G protein occur prior to ligand binding, we analyzed dominant-negative mutant receptors that compete with wild-type receptors for G proteins, and(More)
The alpha-pheromone receptor encoded by the STE2 gene contains seven potential transmembrane domains. Its ability to transduce the pheromone signal is thought to require the action of a G protein. As an initial step toward defining the structural features of the receptor required for its activity, we examined the phenotypic consequences of linker insertion(More)
The pheromone response in the yeast Saccharomyces cerevisiae is mediated by a heterotrimeric G protein. The Gbetagamma subunit (a complex of Ste4p and Ste18p) is associated with both internal and plasma membranes, and a portion is not stably associated with either membrane fraction. Like Ras, Ste18p contains a farnesyl-directing CaaX box motif (C-terminal(More)