D J Winarski

Learn More
Stump stresses were correlated to prosthesis loads for two unilateral, below-knee amputees over a range of flexion-extension angular adjustments. Normal stresses on the patellar tendon and gastrocnemius were related to the axial force and flexion-extension moment of the prosthesis via a matrix equation. Elements of this matrix, influence factors calculated(More)
Mechanical energy expenditure during level walking was evaluated and graphed for two unilateral, below-knee amputees over time and a range of adjustments of the flexion-extension alignment angle. The resulting mechanical energy surfaces were then least-squared fitted with an analytical function that was linear in time and quadratic in flexion-extension(More)
This study extends what had been a purely numerical model that used influence-factor matrices to relate the stump stresses to prosthesis loads for unilateral, below/knee amputees. Previously published influence-factor matrices are now factored into a coefficient matrix times the inverse of a stump geometry matrix. Using actual stump parameters, new(More)
  • 1