D. J. Prockop

Learn More
Bone marrow stromal cells exhibit multiple traits of a stem cell population. They can be greatly expanded in vitro and induced to differentiate into multiple mesenchymal cell types. However, differentiation to non-mesenchymal fates has not been demonstrated. Here, adult rat stromal cells were expanded as undifferentiated cells in culture for more than 20(More)
Quantitative assays for human DNA and mRNA were used to examine the paradox that intravenously (i.v.) infused human multipotent stromal cells (hMSCs) can enhance tissue repair without significant engraftment. After 2 x 10(6) hMSCs were i.v. infused into mice, most of the cells were trapped as emboli in lung. The cells in lung disappeared with a half-life of(More)
Marrow stromal cells are adult stem cells from bone marrow that can differentiate into multiple nonhematopoietic cell lineages. Previous reports demonstrated that single-cell-derived colonies of marrow stromal cells contained two morphologically distinct cell types: spindle-shaped cells and large flat cells. Here we found that early colonies also contain a(More)
There is considerable interest in the biology and therapeutic potential of adult stem cells from bone marrow stroma, variously referred to as mesenchymal stem cells or marrow stromal cells (MSCs). Human MSCs can expand rapidly in culture, but the rate of expansion and the yields of multipotential progenitors are inversely related to the plating density and(More)
Mesenchymal stem cells or multipotent stromal cells (MSCs) isolated from the bone marrow of adult organisms were initially characterized as plastic adherent, fibroblastoid cells with the capacity to generate heterotopic osseous tissue when transplanted in vivo. In recent years, MSCs or MSC-like cells have been shown to reside within the connective tissue of(More)
Marrow stromal cells (MSC) can be expanded rapidly in vitro and differentiated into multiple mesodermal cell types. In addition, differentiation into neuron-like cells expressing markers typical for mature neurons has been reported. To analyze whether such cells, exposed to differentiation media, could develop electrophysiological properties characteristic(More)
For reasons that are not apparent, it has been difficult to isolate and expand the adult stem cells referred to as mesenchymal stem cells or marrow stromal cells (MSCs) from murine bone marrow. We developed a protocol that provides rapidly expanding MSCs from 5 strains of inbred mice. The MSCs obtained from 5 different strains of mice were similar to human(More)
Bone marrow stroma contains a unique cell population, referred to as marrow stromal cells (MSCs), capable of differentiating along multiple mesenchymal cell lineages. A standard liquid culture system has been developed to isolate MSCs from whole marrow by their adherence to plastic wherein the cells grow as clonal populations derived from a single precursor(More)
Previous reports suggested that culture as 3D aggregates or as spheroids can increase the therapeutic potential of the adult stem/progenitor cells referred to as mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs). Here we used a hanging drop protocol to prepare human MSCs (hMSCs) as spheroids that maximally expressed TNFalpha stimulated(More)