D. J. Harding

Learn More
Recent technological advances in the performance of small micro-lasers and multi-channel multi-event photo-detectors have enabled the development of experimental airborne lidar (light detection and ranging) systems based on a low-SNR (LSNR) paradigm. Due to dense point spacing (tens of points per square meter) and sub-decimeter range resolution, LSNR lidar(More)
Since its initial operation over 30 years ago, most correction magnets in the Fermilab Booster Synchrotron have only been able to fully correct the orbit, tunes, coupling, and chromaticity at injection (400MeV). We have designed a new correction package, including horizontal and vertical dipoles, normal and skew quadrupoles, and normal and skew sextupoles,(More)
In early 2003 it was realized that mechanical changes in the Tevatron dipoles had led to a deterioration of the magnetic field quality that was hindering operation of the accelerator. After extensive study, a remediation program was started in late 2003 that will continue through 2005. The mechanical and magnetic effects are discussed. The readjustment(More)
A system employing an array of inductive pick-up coils around the perimeter of a cylinder has been developed for measurements of the rapidly changing field in the new corrector magnets for the Fermilab Booster. The coils are fabricated on printed circuit boards and feature windings which buck dipole, quadrupole, and sextupole fields, allowing sensitive(More)
The beam from the Fermilab Linac is injected onto a bump in the closed orbit of the Booster Synchrotron where a carbon foil strips the electrons from the Linac’s negative ion hydrogen beam. Although the Booster itself runs at 15 Hz, heat dissipation in the orbit bump magnets has been one limitation to the fraction of the cycles that can be used for(More)
During the 20 years since it was first commissioned, the Fermilab Tevatron has developed strong coupling between the two transverse degrees of freedom. A circuit of skew quadrupole magnets is used to correct for coupling and, though capable, its required strength has increased since 1983 by more than an order of magnitude. In more recent years changes to(More)
Over the last two years corrections have been made for the skew quadrupole moment in 530 of the 774 installed dipoles in the Tevatron. This process of modifying the magnets in situ has inherent risk of degrading the performance of the superconducting accelerator. In order to manage the risk, as well as to ensure the corrections were done consistently,(More)
A method for measurement of rapidly changing magnetic fields has been developed and applied to the testing of new room temperature corrector packages designed for the Fermilab Booster Synchrotron. The method is based on fast digitization of a slowly rotating tangential coil probe, with analysis combining the measured coil voltages across a set of successive(More)
During the design of the Fermilab Main Injector synchrotron it was recognized that the aperture was limited at the beam transfer and extraction points by the combination of the Lambertson magnets and the reused Main Ring quadrupoles located between the Lambertsons. Increased intensity demands on the Main Injector from antiproton production for the collider(More)
To better control the beam position, tune, and chromaticity in the Fermilab Booster synchrotron, a new package of six corrector elements has been designed, incorporating both normal and skew orientations of dipole, quadrupole, and sextupole magnets. The devices are under construction and will be installed in 48 locations in the Booster accelerator. Each of(More)