D. H. Zhou

Learn More
This paper is concerned with the robust fault detection problem for a class of discrete-time networked systems with distributed sensors. Since the bandwidth of the communication channel is limited, packets from different sensors may be dropped with different missing rates during the transmission. Therefore, a diagonal matrix is introduced to describe the(More)
In this paper, the problems of fault detection, isolation, and estimation are considered for a class of discrete time-varying networked sensing systems with incomplete measurements. A unified measurement model is utilized to simultaneously characterize both the phenomena of multiple communication delays and data missing. A least-squares filter that(More)
—In this paper, the distributed filtering problem is investigated for a class of discrete time-varying systems with an event-based communication mechanism. Each intelligent sensor node transmits the data to its neighbors only when the local innovation violates a predetermined Send-on-Delta (SoD) data transmission condition. The aim of the proposed problem(More)
In this paper, we investigate the distributed filtering problem over wireless sensor networks (WSNs) with bandwidth and energy constraints. To utilize the limited resources efficiently, a novel event-based mechanism is proposed for the sensor node, such that only selected valuable data are broadcasted to its neighboring sensors via the wireless channel(More)
This paper is concerned with polynomial filtering and fault detection problems for a class of nonlinear systems subject to additive noises and faults. The nonlinear functions are approximated with polynomials of a chosen degree. Different from the traditional methods, the approximation errors are not discarded but formulated as low-order polynomial terms(More)