D. Franco

Learn More
Recent genome-wide association studies have uncovered genomic loci that underlie an increased risk for atrial fibrillation, the major cardiac arrhythmia in humans. The most significant locus is located in a gene desert at 4q25, approximately 170 kilobases upstream of PITX2, which codes for a transcription factor involved in embryonic left-right asymmetry(More)
During heart development, 2 fast-conducting regions of working myocardium balloon out from the slow-conducting primary myocardium of the tubular heart. Three regions of primary myocardium persist: the outflow tract, atrioventricular canal, and inflow tract, which are contiguous throughout the inner curvature of the heart. The contribution of the inflow(More)
The CXCL12gamma chemokine arises by alternative splicing from Cxcl12, an essential gene during development. This protein binds CXCR4 and displays an exceptional degree of conservation (99%) in mammals. CXCL12gamma is formed by a protein core shared by all CXCL12 isoforms, extended by a highly cationic carboxy-terminal (C-ter) domain that encompass four(More)
Pitx2 is a homeobox transcription factor involved in left-right signaling during embryogenesis. Disruption of left-right signaling in mice within its core nodal/lefty cascade, results in impaired expression of the last effector of the left-right cascade, Pitx2, leading in many cases to absence or bilateral expression of Pitx2 in lateral plate mesoderm(More)
The Cell Design System (CDS) is part of a set of tools developed in the 1970s by the Electronics Division of Xerox to support CAD design. This paper describes the CDS, which is a highly interactive graphics system used for layout of custom chips. Described are the hardware environment and language, the kinds of manipulation allowed, types of objects, and(More)
BACKGROUND Pitx2 (paired-like homeodomain 2 transcription factor) is crucial for heart development, but its role in heart failure (HF) remains uncertain. The present study lays the groundwork implicating Pitx2 signalling in different modalities of HF. METHODOLOGY/PRINCIPAL FINDINGS A variety of molecular, cell-based, biochemical, and immunochemical assays(More)
MicroRNAs are noncoding RNAs of approximately 22-24 nucleotides which are capable of interacting with the 3' untranslated region of coding RNAs (mRNAs), leading to mRNA degradation and/or protein translation blockage. In recent years, differential microRNA expression in distinct cardiac development and disease contexts has been widely reported, yet the role(More)
Cardiovascular development is a complex process in which several transcriptional pathways are operative, providing instructions to the developing cardiomyocytes, while coping with contraction and morphogenetic movements to shape the mature heart. The discovery of microRNAs has added a new layer of complexity to the molecular mechanisms governing the(More)