D. Franceschini

Learn More
In this study, we injected 10 mg/kg kainate i.p. into rats. This resulted in a brain injury, which we quantified in the hippocampus, the amygdala, and the pyriform cortex. Neuronal damage was preceded by a set of typical behavioral signs and by biochemical changes (noradrenaline decrease and 5-hydroxyindoleacetic acid increase) in the affected brain areas.(More)
Unilateral injection into the right substantia nigra of the catecholaminergic neurotoxin 6-hydroxydopamine (6-OHDA) produces extensive loss of dopaminergic cells ('hemi-parkinsonian rat'). The pineal hormone melatonin, which is a potent antioxidant against different reactive oxygen species and has been reported to be neuroprotective in vivo and in vitro,(More)
Corticotropin-releasing factor (CRF) receptors are members of the superfamily of G-protein coupled receptors that utilise adenylate cyclase and subsequent production of cAMP for signal transduction in many tissues. Activation of cAMP-dependent pathways, through elevation of intracellular cAMP levels is known to promote survival of a large variety of central(More)
The pineal hormone melatonin protects neurons in vitro from excitotoxicity mediated by kainate-sensitive glutamate receptors and from oxidative stress-induced DNA damage and apoptosis. Intraperitoneal injection on kainate into experimental animals triggers DNA damage in several brain areas, including the hippocampus. It is not clear whether melatonin is(More)
1 Tramadol hydrochloride is a centrally acting opioid analgesic whose efficacy and potency is only five to ten times lower than that of morphine. Opioid, as well as non-opioid mechanisms, may participate in the analgesic activity of tramadol. 2 [3H]-NE uptake in isolated rat cortical synaptosomes was studied in the presence of tramadol, desipramine,(More)
The mechanisms by which neurons die after stroke and status epilepticus and related neuropathological conditions are unclear, but may involve voltage-dependent Na+ channels, glutamate receptors, and nitric oxide (NO.). These questions were investigated using an in vitro primary cell culture model in which hippocampal pyramidal neurons undergo a gradual and(More)
The physiological roles of the pineal hormone melatonin are still not completely clarified. Recently it has been shown that melatonin is a potent, endogenous scavenger of reactive oxygen species suggesting that it might interfere with neurodegenerative processing involving free-radical formation and excitatory aminoacid release. These neuroprotective(More)
We recently reported that the pineal hormone melatonin protected neuronal cultures from excitotoxicity mediated via kainate-sensitive glutamate receptors and from oxidative stress-induced apoptosis. It has been shown that in rats, a systemic administration of kainate induces apoptotic cell death in various brain regions. In this study, we assayed the extent(More)
The full range of physiological actions of melatonin is not completely known. In mammals, it modulates gonadal function and regulates biological rhythms. Furthermore, it has also been reported to have anxyolitic, sedative, and anticonvulsant properties, both in human and animals. Recently it has been shown that melantonin is a potent, endogenous hydroxyl(More)