D. Christian Glattli

Learn More
We report on the intershell electron transport in multiwalled carbon nanotubes (MWNTs). To do this, local and nonlocal four-point measurements are used to study the current path through the different shells of a MWNT. For short electrode separations less, similar 1 mum the current mainly flows through the two outer shells, described by a resistive(More)
The on-demand generation of pure quantum excitations is important for the operation of quantum systems, but it is particularly difficult for a system of fermions. This is because any perturbation affects all states below the Fermi energy, resulting in a complex superposition of particle and hole excitations. However, it was predicted nearly 20 years ago(More)
What is the complex impedance of a fully coherent quantum resistance-capacitance (RC) circuit at gigahertz frequencies in which a resistor and a capacitor are connected in series? While Kirchhoff's laws predict addition of capacitor and resistor impedances, we report on observation of a different behavior. The resistance, here associated with charge(More)
We report on the electron analog of the single-photon gun. On-demand single-electron injection in a quantum conductor was obtained using a quantum dot connected to the conductor via a tunnel barrier. Electron emission was triggered by the application of a potential step that compensated for the dot-charging energy. Depending on the barrier transparency, the(More)
FIG. 1. AFM image of a MWNT (a) before and (b) after the application of the electrical-breakdown method. d has been reduced from 12 to 3 nm. L 600 nm and the electrode height Interestingly, the model describes the experimental observation that the high-bias current does not depend on is 45 nm. Residual lithography resist is observed to follow the electrode(More)
The complete knowledge of a quantum state allows the prediction of the probability of all possible measurement outcomes, a crucial step in quantum mechanics. It can be provided by tomographic methods which have been applied to atomic, molecular, spin and photonic states. For optical or microwave photons, standard tomography is obtained by mixing the unknown(More)
We report on direct measurements of the electronic shot noise of a quantum point contact at frequencies nu in the range 4-8 GHz. The very small energy scale used ensures energy independent transmissions of the few transmitted electronic modes and their accurate knowledge. Both the thermal energy and the quantum point contact drain-source voltage V_{ds} are(More)
The search for new efficient thermoelectric devices converting waste heat into electrical energy is of major importance. The physics of mesoscopic electronic transport offers the possibility to develop a new generation of nanoengines with high efficiency. Here we describe an all-electrical heat engine harvesting and converting dissipated power into an(More)
Transport measurements through crossed metallic single-wall nanotubes are presented. We observe a zero-bias anomaly in one tube which is suppressed by a current flowing through the other nanotube. These results are compared with a Luttinger-liquid model which takes into account electrostatic tube-tube coupling together with crossing-induced backscattering(More)
We have studied the resistance of single-wall carbon nanotubes measured in a four-point configuration with noninvasive voltage electrodes. The voltage drop is detected using multiwalled carbon nanotubes while the current is injected through nanofabricated Au electrodes. The resistance at room temperature is shown to be linear with the length as expected for(More)