Learn More
Graded, reversible suppression of neuronal excitability represents a logical goal of therapy for epilepsy and intractable pain. To achieve such suppression, we have developed the means to transfer "electrical silencing" genes into neurons with sensitive control of transgene expression. An ecdysone-inducible promoter drives the expression of inwardly(More)
Previous studies have demonstrated a role for Kv4 alpha subunits in the generation of the fast transient outward K+ current, I(to,f), in the mammalian myocardium. The experiments here were undertaken to explore the role of homomeric/heteromeric assembly of Kv4.2 and Kv4.3 and of the Kv channel accessory subunit, KChIP2, in the generation of mouse(More)
To understand the function of specific proteins in sensory hair cells, it is necessary to add or inactivate those proteins in a system where their physiological effects can be studied. Unfortunately, the usefulness of heterologous expression systems for the study of many hair cell proteins is limited by the inherent difficulty of reconstituting the hair(More)
The absence of a direct route to the apical plasma membrane (PM) for single transmembrane domain (TMD) proteins in polarized hepatic cells has been inferred but never directly demonstrated. The genes encoding three pairs of apical PM proteins, whose extracellular domains are targeted exclusively to the apical milieu in Madin-Darby canine kidney cells, were(More)
Time- and voltage-dependent local anesthetic effects on sodium (Na) currents are generally interpreted using modulated receptor models that require formation of drug-associated nonconducting states with high affinity for the inactivated channel. The availability of inactivation-deficient Na channels has enabled us to test this traditional view of the(More)
Voltage-gated K(+) channels are multimeric proteins, consisting of four pore-forming alpha-subunits alone or in association with accessory subunits. Recently, for example, it was shown that the accessory Kv channel interacting proteins form complexes with Kv4 alpha-subunits and modulate Kv4 channel activity. The experiments reported here demonstrate that(More)
OBJECTIVE Potassium (K(+)) channels on immune cells have gained attention recently as promising targets of therapy for immune-mediated neurological diseases such as multiple sclerosis (MS). We examined K(+) channels on dendritic cells (DCs), which infiltrate the brain in MS and may impact disease course. METHODS We identified K(+) channels on(More)
BACKGROUND AND PURPOSE Poly(ADP-ribose) polymerase (PARP-1; Enzyme Commission 2.4.30) is a nuclear DNA repair enzyme that mediates early neuronal ischemic injury. Using novel 3-dimensional, fast spin-echo-based diffusion-weighted imaging, we compared acute (21 hours) and long-term (3 days) ischemic volume after middle cerebral artery (MCA) occlusion in(More)
Hypoxia initiates the neurosecretory response of the carotid body (CB) by inhibiting one or more potassium channels in the chemoreceptor cells. Oxygen-sensitive K(+) channels were first described in rabbit CB chemoreceptor cells, in which a transient outward K(+) current was reported to be reversibly inhibited by hypoxia. Although progress has been made to(More)
Suppression of electrical alternans may be antiarrhythmic. Our previous computer simulations have suggested that increasing the rapid component of the delayed rectifier K(+) current (I(Kr)) suppresses alternans. To test this hypothesis, I(Kr) in isolated canine ventricular myocytes was increased by infection with an adenovirus containing the gene for the(More)