Learn More
Stomata are epidermal structures that modulate gas exchange between a plant and its environment. During development, stomata are specified and positioned nonrandomly by the integration of asymmetric cell divisions and intercellular signaling. The Arabidopsis mitogen-activated protein kinase kinase kinase gene, YODA, acts as part of a molecular switch(More)
Stomata, epidermal structures that modulate gas exchange between plants and the atmosphere, play critical roles in primary productivity and the global climate. Positively acting transcription factors and negatively acting mitogen-activated protein kinase (MAPK) signaling control stomatal development in Arabidopsis; however, it is not known how the opposing(More)
The establishment of new cell lineages during development often requires a symmetry-breaking event. An asymmetric division in the epidermis of plants initiates a lineage that ultimately produces stomatal guard cells. Stomata are pores in the epidermis that serve as the main conduits for gas exchange between plants and the atmosphere; they are critical for(More)
Plants must coordinate the regulation of biochemistry and anatomy to optimize photosynthesis and water-use efficiency. The formation of stomata, epidermal pores that facilitate gas exchange, is highly coordinated with other aspects of photosynthetic development. The signalling pathways controlling stomata development are not fully understood, although(More)
Development in multicellular organisms requires the organized generation of differences. A universal mechanism for creating such differences is asymmetric cell division. In plants, as in animals, asymmetric divisions are correlated with the production of cellular diversity and pattern; however, structural constraints imposed by plant cell walls and the(More)
BACKGROUND The terminal phase of cytokinesis in eukaryotic cells involves breakage of the intercellular canal containing the spindle midzone and resealing of the daughter cells. Recent observations suggest that the spindle midzone is required for this process. In this study, we investigated the possibility that targeted secretion in the vicinity of the(More)
The mechanisms that generate dynamic spatial patterns within proliferating tissues are poorly understood, largely because of difficulties in unravelling interactions between cell specification, polarity, asymmetric division, rearrangements, and growth. We address this problem for stomatal spacing in plants, which offer the simplifying advantage that cells(More)
Lineage-specific stem cells are critical for the production and maintenance of specific cell types and tissues in multicellular organisms. In Arabidopsis, the initiation and proliferation of stomatal lineage cells is controlled by the basic helix-loop-helix transcription factor SPEECHLESS (SPCH). SPCH-driven asymmetric and self-renewing divisions allow(More)
The mechanism by which polarity of the left-right (LR) axis is initially established with the correct handedness is not understood for any embryo. C. elegans embryos exhibit LR asymmetry with an invariant handedness that is first apparent at the six-cell stage and persists throughout development. We show here that a strong loss-of-function mutation in a(More)
Plant development has a significant postembryonic phase that is guided heavily by interactions between the plant and the outside environment. This interplay is particularly evident in the development, pattern and function of stomata, epidermal pores on the aerial surfaces of land plants. Stomata have been found in fossils dating from more than 400 million(More)