D B Grayden

Learn More
The ability to electrically stimulate neural and other excitable tissues in behaving experimental animals is invaluable for both the development of neural prostheses and basic neurological research. We developed a fully implantable neural stimulator that is able to deliver two channels of intra-cochlear electrical stimulation in the rat. It is powered via a(More)
Synaptic plasticity must be both competitive and stable if ongoing learning of the structure of neural inputs is to occur. In this paper, a wide class of spike-timing-dependent plasticity (STDP) models is identified that have both of these desirable properties in the case in which the input consists of subgroups of synapses that are correlated within the(More)
OBJECTIVE ON and OFF retinal ganglion cells (RGCs) are known to have non-monotonic responses to increasing amplitudes of high frequency (2 kHz) biphasic electrical stimulation. That is, an increase in stimulation amplitude causes an increase in the cell's spike rate up to a peak value above which further increases in stimulation amplitude cause the cell to(More)
There is increased interest from the research community and clinicians to implement closed-loop stimulation strategies in neurobionic devices. That is, to adjust stimulation levels dynamically based on the responses of neural tissue in real time. To adjust electrical stimulation in a closed-loop bionic device, a model-based controller design can be(More)
Retinal implants offer prospects of vision restoration for some blind patients by eliciting visual percepts of spots of light called 'phosphenes'. Recently, a mathematical model has been developed that predicts patients' perception of phosphene brightness for current-driven electrical stimulation of the retina. This model is explored for different(More)
  • 1