D. Alwyn Dart

Learn More
Current hormonal therapies for prostate cancer are effective initially, but inevitably tumours progress to an advanced, metastatic stage, often referred to as 'androgen independent'. However, the androgen receptor (AR) signalling pathway is still key for their growth. It is speculated that tumours escape hormonal control via reduction in corepressor(More)
Since they were first described in the 1990s, circulating microRNAs (miRNAs) have provided an active and rapidly evolving area of current research that has the potential to transform cancer diagnostics and therapeutics. In particular, miRNAs could provide potential new biomarkers for prostate cancer, the most common cause of cancer in UK men. Current(More)
MicroRNAs (miRs) play an important role in the development of many complex human diseases and may have tumour suppressor or oncogenic (oncomir) properties. Prostate cancer is initially an androgen-driven disease, and androgen receptor (AR) remains a key driver of growth even in castration-resistant tumours. However, AR-mediated oncomiR pathways remain to be(More)
Progression of prostate cancer is highly dependent upon the androgen receptor pathway, such that knowledge of androgen-regulated proteins is vital to understand and combat this disease. Using a proteomic screen, we found the RNA-binding protein FUS/TLS (Fused in Ewing's Sarcoma/Translocated in Liposarcoma) to be downregulated in response to androgen. FUS(More)
Androgens, required for normal development and fertility of males and females, have vital roles in the reproductive tract, brain, cardiovascular system, smooth muscle and bone. Androgens function via the androgen receptor (AR), a ligand-dependent transcription factor. To assay and localise AR activity in vivo we generated the transgenic "ARE-Luc" mouse,(More)
Prostate cancers (PCs), initially responsive to anti-androgen therapies, often advance to a hormone-refractory 'castrate-resistant' PC (CRPC) stage. However, the androgen receptor (AR) pathway remains active and key for cell growth and gene expression within tumours, even in the apparent absence of hormone. Proposed mechanisms to explain progression,(More)
Progression of prostate cancer is highly dependent upon the androgen receptor pathway, such that knowledge of androgen-regulated proteins is vital to understand and combat this disease. Using a proteomic screen, we found the RNA-binding protein FUS/TLS (Fused in Ewing's Sarcoma/Translocated in Liposarcoma) to be downregulated in response to androgen. FUS(More)
Current therapies for prostate cancer include antiandrogens, inhibitory ligands of the androgen receptor, which repress androgen-stimulated growth. These include the selective androgen receptor modulators cyproterone acetate and hydroxyflutamide and the complete antagonist bicalutamide. Their activity is partly dictated by the presence of androgen receptor(More)
  • 1