Learn More
The genus Shewanella has been studied since 1931 with regard to a variety of topics of relevance to both applied and environmental microbiology. Recent years have seen the introduction of a large number of new Shewanella-like isolates, necessitating a coordinated review of the genus. In this work, the phylogenetic relationships among known shewanellae were(More)
Shewanella oneidensis MR-1 is a gram-negative facultative anaerobe capable of utilizing a broad range of electron acceptors, including several solid substrates. S. oneidensis MR-1 can reduce Mn(IV) and Fe(III) oxides and can produce current in microbial fuel cells. The mechanisms that are employed by S. oneidensis MR-1 to execute these processes have not(More)
Iron and manganese oxides or oxyhydroxides are abundant transition metals, and in aquatic environments they serve as terminal electron acceptors for a large number of bacterial species. The molecular mechanisms of anaerobic metal reduction, however, are not understood. Shewanella putrefaciens is a facultative anaerobe that uses Fe(III) and Mn(IV) as(More)
Shewanella oneidensis is a metal reducer that can use several terminal electron acceptors for anaerobic respiration, including fumarate, nitrate, dimethyl sulfoxide (DMSO), trimethylamine N-oxide (TMAO), nitrite, and insoluble iron and manganese oxides. Two S. oneidensis mutants, SR-558 and SR-559, with Tn5 insertions in crp, were isolated and analyzed.(More)
Unlike other bacteria that use FNR to regulate anaerobic respiration, Shewanella oneidensis MR-1 uses the cyclic AMP receptor protein (CRP) for this purpose. Three putative genes, cyaA, cyaB, and cyaC, predicted to encode class I, class IV, and class III adenylate cyclases, respectively, have been identified in the genome sequence of this bacterium.(More)
Shewanella oneidensis MR-1 produced electrically conductive pilus-like appendages called bacterial nanowires in direct response to electron-acceptor limitation. Mutants deficient in genes for c-type decaheme cytochromes MtrC and OmcA, and those that lacked a functional Type II secretion pathway displayed nanowires that were poorly conductive. These mutants(More)
Bacteria of the genus Shewanella are known for their versatile electron-accepting capacities, which allow them to couple the decomposition of organic matter to the reduction of the various terminal electron acceptors that they encounter in their stratified environments. Owing to their diverse metabolic capabilities, shewanellae are important for carbon(More)
Two Tn5-generated mutants of Shewanella putrefaciens with insertions in menD and menB were isolated and analyzed. Both mutants were deficient in the use of several terminal electron acceptors, including Fe(III). This deficiency was overcome by the addition of menaquinone (vitamin K(2)). Isolated membrane fractions from both mutants were unable to reduce(More)
Cells of Flavobacterium johnsoniae glide rapidly over surfaces. The mechanism of F. johnsoniae gliding motility is not known. Eight gld genes required for gliding motility have been described. Disruption of any of these genes results in complete loss of gliding motility, deficiency in chitin utilization, and resistance to bacteriophages that infect(More)
In an effort to improve the understanding of electron transfer mechanisms at the microbe-mineral interface, Shewanella oneidensis MR-1 mutants with in-frame deletions of outer-membrane cytochromes (OMCs), MtrC and OmcA, were characterized for the ability to reduce ferrihydrite (FH) using a suite of microscopic, spectroscopic, and biochemical techniques.(More)