Learn More
We show that a full solenoid is locally the product of a euclidean component and />-adic components for each rational prime p. An automorphism of a solenoid preserves these components, and its topological entropy is shown to be the sum of the euclidean and p-adic contributions. The p-adic entropy of the corresponding rational matrix is computed using its(More)
We study the non-archimedean counterpart to the complex amoeba of an algebraic variety, and show that it coincides with a polyhedral set defined by Bieri and Groves using valuations. For hypersurfaces this set is also the tropical variety of the defining polynomial. Using non-archimedean analysis and a recent result of Conrad we prove that the amoeba of an(More)
Let α be an action of Z by continuous automorphisms of a compact abelian group X. A point x in X is called homoclinic for α if αx→ 0X as ‖n‖ → ∞. We study the set ∆α(X) of homoclinic points for α, which is a subgroup of X. If α is expansive then ∆α(X) is at most countable. Our main results are that if α is expansive, then (1) ∆α(x) is nontrivial if and only(More)
We investigate algebraic Zd-actions of entropy rank one, namely those for which each element has finite entropy. Such actions can be completely described in terms of diagonal actions on products of local fields using standard adelic machinery. This leads to numerous alternative characterizations of entropy rank one, both geometric and algebraic. We then(More)
We investigate algebraic Z-actions of entropy rank one, namely those for which each element has finite entropy. Such actions can be completely described in terms of diagonal actions on products of local fields using standard adelic machinery. This leads to numerous alternative characterizations of entropy rank one, both geometric and algebraic. We then(More)