Learn More
Growing evidence indicates that microRNAs (miRNAs or miRs) are involved in basic cell functions and oncogenesis. Here we report that miR-133 has a critical role in determining cardiomyocyte hypertrophy. We observed decreased expression of both miR-133 and miR-1, which belong to the same transcriptional unit, in mouse and human models of cardiac hypertrophy.(More)
MicroRNAs (miRNAs) are noncoding small RNAs that repress protein translation by targeting specific messenger RNAs. miR-15a and miR-16-1 act as putative tumor suppressors by targeting the oncogene BCL2. These miRNAs form a cluster at the chromosomal region 13q14, which is frequently deleted in cancer. Here, we report that the miR-15a and miR-16-1 cluster(More)
MicroRNAs (miRs) are small noncoding RNAs that regulate gene expression primarily through translational repression. In erythropoietic (E) culture of cord blood CD34+ progenitor cells, the level of miR 221 and 222 is gradually and sharply down-modulated. Hypothetically, this decline could promote erythropoiesis by unblocking expression of key functional(More)
The production of red blood cells follows the sequential formation of proerythroblasts and basophilic, polychromatophilic and orthochromatic erythroblasts, and is promoted by the hormone erythropoietin (Epo) in response to tissue hypoxia. However, little is known about the negative regulation of this process. Death receptors are a family of surface(More)
BACKGROUND Diabetes mellitus impairs endothelial cell (EC) function and postischemic reparative neovascularization by molecular mechanisms that are not fully understood. microRNAs negatively regulate the expression of target genes mainly by interaction in their 3' untranslated region. METHODS AND RESULTS We found that microRNA-503 (miR-503) expression in(More)
Retinoic Acid (RA) treatment induces disease remission of Acute Promyelocytic Leukaemia (APL) patients by triggering terminal differentiation of neoplastic cells. RA-sensitivity in APL is mediated by its oncogenic protein, which results from the recombination of the PML and the RA receptor alpha (RAR alpha) genes (PML/RAR alpha fusion protein). Ectopic(More)
Hematopoietic (Hem) and endothelial (End) lineages derive from a common progenitor cell, the hemangioblast: specifically, the human cord blood (CB) CD34+KDR+ cell fraction comprises primitive Hem and End cells, as well as hemangioblasts. In humans, the potential therapeutic role of Hem and End progenitors in ischemic heart disease is subject to intense(More)
Despite much progress in prostate cancer management, new diagnostic, prognostic and therapeutic tools are needed to predict disease severity, choose among the available treatments and establish more effective therapies for advanced prostate cancer. In the last few years, compelling evidence has documented the role of microRNAs as new broad-spectrum(More)
BACKGROUND MiR-221 and miR-222 are two highly homologous microRNAs whose upregulation has been recently described in several types of human tumors, for some of which their oncogenic role was explained by the discovery of their target p27, a key cell cycle regulator. We previously showed this regulatory relationship in prostate carcinoma cell lines in vitro,(More)
Human embryonic stem cells (hESCs) may become important for cardiac repair due to their potentially unlimited ability to generate cardiomyocytes (CMCs). Moreover, genetic manipulation of hESC-derived CMCs would be a very promising technique for curing myocardial disorders. At the present time, however, inducing the differentiation of hESCs into CMCs is(More)