Learn More
Engineered nano-sized Cu oxide particles are extensively used in diverse applications. Because aquatic environments are the ultimate "sink" for all contaminants, it is expected that nanoparticles (NP) will follow the same fate. In this study, two marine invertebrates Scrobicularia plana and Hediste diversicolor were chosen as ecotoxicological models. The(More)
Dissolution of nanoparticles (NPs) is an important property that alters their abundance and is often a critical step in determining safety of nanoparticles. The dissolution status of the NPs in exposure media (i.e. whether they remain in particulate form or dissolve - and to what extent), strongly affects the uptake pathway, toxicity mechanisms and the(More)
The respiratory epithelium is a significant target of inhaled, nano-sized particles, the biological reactivity of which will depend on its physicochemical properties. Surface-modified, 50 and 100 nm, polystyrene latex nanoparticles (NPs) were used as model particles to examine the effect of particle size and surface chemistry on transformed human alveolar(More)
In nanotoxicology, the capacity of nanoparticles of the same composition but different shape to induce cytotoxicity and genotoxicity is largely unknown. A series of cytotoxic and genotoxic responses following in vitro exposure to differently shaped CuO nanoparticles (CuO NPs, mass concentrations from 0.1 to 100 μg/ml) were assessed in murine macrophages RAW(More)
Increasing use of engineered nanoparticles (NPs) is likely to result in release of these particles to the aquatic environment where the NPs may eventually accumulate in sediment. However, little is known about the potential ecotoxicity of sediment-associated engineered NPs. We here consider the case of metal oxide NPs using CuO to understand if the effects(More)
We report a versatile capillary-based droplet reactor for the controlled synthesis of nanoparticles over a wide range of flow conditions and temperatures. The reactor tolerates large flow-rate differentials between individual reagent streams, and allows droplet composition to be varied independently of residence time and volume. The reactor was successfully(More)
There can be significant variability between bioreactivity studies of nanomaterials that are apparently the same, possibly reflecting differences in the models used and differing sources of experimental material. In this study, we have generated two crystal forms of titanium dioxide nanoparticles (nano-TiO2), pure anatase and pure rutile to address the(More)
The increasing use of nano-sized materials in our environment, and in many consumer products, dictates new safety concerns. In particular, adequate experimental models are needed to evaluate skin toxicity of metal oxide ions, commonly found in cosmetic and dermatologic preparations. We have addressed the biological effects of topically applied copper oxide(More)
This work presents results on synthesis of isotopically enriched (99% (65)Cu) copper oxide nanoparticles and its application in ecotoxicological studies. (65)CuO nanoparticles were synthesized as spheres (7 nm) and rods (7 × 40 nm). Significant differences were observed between the reactivity and dissolution of spherical and rod shaped nanoparticles. The(More)
The present study examined the relative importance of copper (aqueous Cu and CuO particles of different sizes) added to sediment to determine the bioaccumulation, toxicokinetics, and effects in the deposit feeder Potamopyrgus antipodarum. In experiment 1, the bioaccumulation of Cu (240 µg Cu/g dry wt of sediment) added as aqueous Cu (CuCl2 ), nano- (6 nm,(More)