Learn More
Depression is one of the most common psychiatric symptoms in Alzheimer's disease (AD), and considerable evidence indicates that major depressive disorder increases the risk of AD. 1–3 To date, however, the molecular mechanisms underlying the clinical association between depression and AD have remained elusive. Soluble oligomers of the amyloid-b peptide(More)
Oculoleptomeningeal amyloidosis (OA) is a fatal and untreatable hereditary disease characterized by the accumulation of transthyretin (TTR) amyloid within the central nervous system. The mechanisms underlying the pathogenesis of OA, and in particular how amyloid triggers neuronal damage, are still unknown. Here, we show that amyloid fibrils formed by a(More)
Protein misfolding and aggregation have been linked to several human diseases, including Alzheimer's disease, Parkinson's disease, and systemic amyloidosis, by mechanisms that are not yet completely understood. The hallmark of most of these diseases is the formation of highly ordered and beta-sheet-rich aggregates referred to as amyloid fibrils. Fibril(More)
The main hypothesis for prion diseases is that the cellular protein (PrP(C)) can be altered into a misfolded, beta-sheet-rich isoform (PrP(Sc)), which undergoes aggregation and triggers the onset of transmissible spongiform encephalopathies. Here, we investigate the effects of amino-terminal deletion mutations, rPrP(Delta51-90) and rPrP(Delta32-121), on the(More)
Parkinson's disease (PD) is a neurodegenerative disorder that is caused by the death of midbrain dopaminergic neurons. Current therapies for PD do not halt the neurodegeneration nor repair the affected neurons. Therefore, search for novel neurotrophic factors (NTF) for midbrain dopaminergic neurons, which could be used in novel therapeutic approaches, is(More)
  • 1