Learn More
Drosophila thoracic mechanosensory bristles originate from cells that are singled out from 'proneural' groups of competent epithelial cells. Neural competence is restricted to individual sensory organ precursors (SOPs) by Delta/Notch-mediated 'lateral inhibition', whereas other cells in the proneural field adopt an epidermal fate. The precursors of the(More)
Adrenocortical carcinoma is a rare but aggressive cancer with unknown aetiology. Constitutive activation of beta-catenin is the most frequent alteration in benign and malignant adrenocortical tumours in patients. Here, we show that constitutive activation of beta-catenin in the adrenal cortex of transgenic mice resulted in progressive steroidogenic and(More)
Thiazide diuretics are used worldwide as a first-choice drug for patients with uncomplicated hypertension. In addition to their antihypertensive effect, thiazides increase bone mineral density and reduce the prevalence of fractures. Traditionally, these effects have been attributed to increased renal calcium reabsorption that occurs secondary to the(More)
Understanding gene regulatory pathways underlying diversification of cell types during development is one of the major challenges in developmental biology. Progressive specification of mesodermal lineages that are at the origin of body wall muscles in Drosophila embryos has been extensively studied during past years, providing an attractive framework for(More)
Adrenal cortical carcinomas (ACC) are rare but aggressive tumours associated with poor prognosis. The two most frequent alterations in ACC in patients are overexpression of the growth factor IGF2 and constitutive activation of Wnt/β-catenin signalling. Using a transgenic mouse model, we have previously shown that constitutive active β-catenin is a bona fide(More)
Carney complex (CNC) is an inherited neoplasia syndrome with endocrine overactivity. Its most frequent endocrine manifestation is primary pigmented nodular adrenocortical disease (PPNAD), a bilateral adrenocortical hyperplasia causing pituitary-independent Cushing's syndrome. Inactivating mutations in PRKAR1A, a gene encoding the type 1 alpha-regulatory(More)
Primary pigmented nodular adrenocortical disease (PPNAD) is associated with inactivating mutations of the PRKAR1A tumor suppressor gene that encodes the regulatory subunit R1α of the cAMP-dependent protein kinase (PKA). In human and mouse adrenocortical cells, these mutations lead to increased PKA activity, which results in increased resistance to apoptosis(More)
In the last 10 years, extensive studies showed that the cAMP pathway is deregulated in patients suffering from adrenocortical tumours, and particularly in primary pigmented nodular adrenocortical disease (PPNAD). Here we describe how evidence arising from the analysis of patients' data, mouse models and in vitro experiments, have shed light on the cAMP(More)
The mammalian target of rapamycin (mTOR) plays essential roles in the regulation of growth-related processes such as protein synthesis, cell sizing and metabolism in both normal and pathological growing conditions. These functions of mTOR are thought to be largely a consequence of its cytoplasmic activity in regulating translation rate, but accumulating(More)
  • 1