Cyril Sobolewski

Learn More
It is well admitted that the link between chronic inflammation and cancer involves cytokines and mediators of inflammatory pathways, which act during the different steps of tumorigenesis. The cyclooxygenases (COXs) are a family of enzymes, which catalyze the rate-limiting step of prostaglandin biosynthesis. This family contains three members: ubiquitously(More)
Enzymatic inhibitors of pro-inflammatory cyclooxygenase-2 (COX-2) possess multiple anti-cancer effects, including chemosensitization. These effects are not always linked to the inhibition of the COX-2 enzyme. Here we analyze the effects of three COX-2 enzyme inhibitors (nimesulide, NS-398 and celecoxib) on apoptosis in different hematopoietic cancer models.(More)
It is well described that cyclooxygenase-2 (COX-2) inhibitors counteract cancer cell proliferation by preventing the G1/S transition. This effect has been associated with the inhibition of COX-2 enzymatic activity but also as an off-target effect essentially in adherent cancer cell models. In this study, we investigated the effect of three COX-2 inhibitors(More)
Cyclooxygenase (COX)-2 is a pro-inflammatory immediate early response protein, chronically up-regulated in many pathological conditions. In autoimmune diseases, it is responsible for degenerative effects whereas in cancer, it correlates with poor prognosis. A constitutive expression of COX-2 is triggered since the earliest steps of carcinogenesis.(More)
Cyclooxygenase-2 (COX-2) is an essential regulator of cancer promotion and progression. Extensive efforts to target this enzyme have been developed to reduce growth of cancer cells for chemopreventive and therapeutic reasons. In this context, cyclooxygenase-2 inhibitors present interesting antitumor effects. However, inhibition of COX-2 by anti-COX-2(More)
The RNA-binding protein tristetraprolin (TTP) promotes rapid decay of mRNAs bearing 3' UTR AU-rich elements (ARE). In many cancer types, loss of TTP expression is observed allowing for stabilization of ARE-mRNAs and their pathologic overexpression. Here we demonstrate that histone deacetylase (HDAC) inhibitors (Trichostatin A, SAHA and sodium butyrate)(More)
Molecules targeting pro-inflammatory pathways have demonstrated beneficial effects in cancer treatment. More recently, combination of natural and synthetic anti-inflammatory drugs was suggested as an appealing strategy to inhibit tumor growth. Herein, we show that curcumin, a polyphenol from Curcuma longa and celecoxib induce apoptosis in hematopoietic(More)
Over 2000 years ago, the Roman encyclopedist and healer, Aulus Cornelius Celsus described acute inflammation in terms of the cardinal signs, rubor (redness), calor (increased heat), tumor (swelling) and dolor (pain), to which Galen later added functio laesa (loss of function). Along with pain, inflammation is the major mammalian mechanism of defense against(More)
  • 1