Learn More
This intracellular study investigates synaptic mechanisms of orientation and direction selectivity in cat area 17. Visually evoked inhibition was analyzed in 88 cells by detecting spike suppression, hyperpolarization, and reduction of trial-to-trial variability of membrane potential. In 25 of these cells, inhibition visibility was enhanced by depolarization(More)
In order to better understand the synaptic nature of the integration process operated by cortical neurons during sensory processing, it is necessary to devise quantitative methods which allow one to infer the level of conductance change evoked by the sensory stimulation and, consequently, the dynamics of the balance between excitation and inhibition. Such(More)
We review here the development of Hodgkin-Huxley (HH) type models of cerebral cortex and thalamic neurons for network simulations. The intrinsic electrophysiological properties of cortical neurons were analyzed from several preparations, and we selected the four most prominent electrophysiological classes of neurons. These four classes are "fast spiking",(More)
Intracellular recordings of neuronal membrane potential are a central tool in neurophysiology. In many situations, especially in vivo, the traditional limitation of such recordings is the high electrode resistance and capacitance, which may cause significant measurement errors during current injection. We introduce a computer-aided technique, Active(More)
This study aims to clarify how endogenous release of cortical acetylcholine (ACh) modulates the balance between excitation and inhibition evoked in visual cortex. We show that electrical stimulation in layer 1 produced a significant release of ACh measured intracortically by chemoluminescence and evoked a composite synaptic response recorded intracellularly(More)
Whole cell patch recordings have been realized in the primary visual cortex of the anesthetized and paralyzed cat, in order to better characterize input resistance and time constant of visual cortical cells in vivo. Measurements of conductance changes evoked by visual stimulation were derived from voltage clamp recordings achieved in continuous mode at two(More)
Synaptic noise is thought to be a limiting factor for computational efficiency in the brain. In visual cortex (V1), ongoing activity is present in vivo, and spiking responses to simple stimuli are highly unreliable across trials. Stimulus statistics used to plot receptive fields, however, are quite different from those experienced during natural visuomotor(More)
Brain computation, in the early visual system, is often considered as a hierarchical process in which features extracted in a given sensory relay are not present in previous stages of integration. In particular, orientation preference and its fine tuning selectivity are functional properties shared by most cortical cells and they are not observed at the(More)
Receptive fields in primary visual cortex (V1) are categorized as simple or complex, depending on their spatial selectivity to stimulus contrast polarity. We studied the dependence of this classification on visual context by comparing, in the same cell, the synaptic responses to three classical receptive field mapping protocols: sparse noise, ternary dense(More)