Cyril Férandon

Learn More
At 135,005 nt, the mitochondrial genome in Agaricus bisporus represents the largest fungal mitochondrial genome sequenced to date. Its large size is mainly due to the presence of mobile genetic elements, including a total of 43 group I introns, three group II introns, and five DNA fragments that show sequence similarity to linear invertron-like plasmids.(More)
The Agrocybe chaxingu and Agrocybe aegerita mitochondrial apocytochrome b coding sequences are highly similar (97% of nt identity), but have highly different sizes (2312 and 4867nt, respectively), due to the presence of three large group IB introns: two (iAae1 and iAae2) in A. aegerita, one (iAch1) in A. chaxingu. All these introns encode a homing(More)
Medicinal mushrooms have currently become a hot issue due to their various therapeutic properties. Of these, Agaricus subrufescens, also known as the "almond mushroom", has long been valued by many societies (i.e., Brazil, China, France, and USA). Since its discovery in 1893, this mushroom has been cultivated throughout the world, especially in Brazil where(More)
BACKGROUND Mycoplasma hominis, a human urogenital pathogen, is involved in genital and extragenital infections and arthritis, particularly in immunocompromised patients. The interleukin (IL) 23/T helper (Th) 17 axis is associated with inflammatory and autoimmune diseases. The aim of this study was to assess the IL-23 response to M. hominis in human(More)
In eukaryotes, introns are located in nuclear and organelle genes from several kingdoms. Large introns (up to 5 kbp) are frequent in mitochondrial genomes of plant and fungi but scarce in Metazoa, even if these organisms are grouped with fungi among the Opisthokonts. Mitochondrial introns are classified in two groups (I and II) according to their RNA(More)
Agaricus subrufescens is one of the most important culinary-medicinal cultivable mushrooms with potentially high-added-value products and extended agronomical valorization. The development of A. subrufescens-related technologies is hampered by, among others, the lack of suitable molecular tools. Thus, this mushroom is considered as a genomic orphan species(More)
Mycoplasma hominis is an opportunistic human mycoplasma species that can be either commensal or pathogenic. Its detection by culture is considered to comprise the reference technique. Previously reported PCR techniques target the 16S rRNA or the gap gene, although sequence variations among clinical isolates may lead to variations in clinical sensitivity.(More)
Mycoplasma hominis is an opportunistic human mycoplasma species that can cause various urogenital infections and, less frequently, extragenital infections. The objective of this work was to study the genetic diversity of this species using a molecular typing method based on multiple-locus variable-number tandem repeat (VNTR) analysis (MLVA). The genome(More)
In temperate forest soils, filamentous ectomycorrhizal and saprotrophic fungi affiliated to the Agaricomycetes and Pezizomycotina contribute to key biological processes. The diversity of soil fungal communities is usually estimated by studying molecular markers such as nuclear ribosomal gene regions amplified from soil-extracted DNA. However, this approach(More)
The Agrocybe aegerita mitochondrial genome possesses two polB genes with linear plasmid origin. The cloning and sequencing of the regions flanking Aa-polB P1 revealed two large inverted repeats (higher than 2421 nt) separated by a single copy region of 5834 nt. Both repeats contain identical copies of the nad4 gene. The single copy region contains two(More)