Learn More
Pollen dispersal is a critical process that shapes genetic diversity in natural populations of plants. Estimating the pollen dispersal curve can provide insight into the evolutionary dynamics of populations and is essential background for making predictions about changes induced by perturbations. Specifically, we would like to know whether the dispersal(More)
The extent of gene dispersal is a fundamental factor of the population and evolutionary dynamics of tropical tree species, but directly monitoring seed and pollen movement is a difficult task. However, indirect estimates of historical gene dispersal can be obtained from the fine-scale spatial genetic structure of populations at drift-dispersal equilibrium.(More)
Although they represent powerful genetic markers in many fields of biology, microsatellites have been isolated in few fungal species. The aim of this study was to assess whether obtaining microsatellite markers with an acceptable level of polymorphism is generally harder from fungi than in other organisms. We therefore surveyed the number, nature and(More)
Both gene flow and historical events influence the genetic diversity of natural populations. One way to understand their respective impact is to analyze population genetic structure at large spatial scales. We studied the distribution of genetic diversity of 17 populations of Vouacapoua americana (Caesalpiniaceae) in French Guiana, using nine microsatellite(More)
California Valley oak (Quercus lobata), one of the state's most distinctive oak species, has experienced serious demographic attrition since the 19th century, due to human activities. Recent estimates of pollen dispersal suggest a small reproductive neighborhood. Whether small neighborhood size is a recent phenomenon, a consequence of reduced gene flow(More)
The spatial genetic structure of the neotropical, clustered tree species Vouacapoua americana (Aublet) was studied in two natural forest stands (Paracou and Nouragues) in French Guiana. Using eight microsatellite loci, V. americana is characterized by a marked genetic structure at small spatial distances (under 30-60 m), in agreement with the limited seed(More)
The occurrence of multiple introductions may be a crucial factor in the successful establishment of invasive species, but few studies focus on the introduction of fungal pathogens, despite their significant effect on invaded habitats. Although Cryphonectria parasitica, the chestnut blight fungus introduced in North America and Europe from Asia during the(More)
Clonal expansion has been observed in several invasive fungal plant pathogens colonizing new areas, raising the question of the origin of clonal lineages. Using microsatellite markers, we retraced the evolutionary history of introduction of the chestnut blight fungus, Cryphonectria parasitica, in North America and western Europe. Combining discriminant(More)
The chloroplast genome has been widely used to describe genetic diversity in plant species. Its maternal inheritance in numerous angiosperm species and low mutation rate are suitable characters when inferring historical events such as possible recolonization routes. Here we have studied chloroplast DNA variation using PCR-RFLP (polymerase chain(More)
Cryphonectria hypovirus 1 (CHV1) is a mycovirus which decreases the virulence of its fungal host Cryphonectria parasitica, the causal agent of chestnut blight recently introduced in Europe. The understanding of the evolutionary processes which have shaped CHV1 populations in Europe is required to develop a sustainable biocontrol strategy targeting chestnut(More)