Learn More
Microsporidian genomes are the leading models to understand the streamlining in response to a pathogenic lifestyle; they are gene-poor and often possess small genomes. In this study, we show a feature of microsporidian genomes that contrasts this pattern of genome reduction. Specifically, genome investigations targeted at Anncaliia algerae, a human pathogen(More)
ParB proteins are one of the three essential components of partition systems that actively segregate bacterial chromosomes and plasmids. In binding to centromere sequences, ParB assembles as nucleoprotein structures called partition complexes. These assemblies are the substrates for the partitioning process that ensures DNA molecules are segregated to both(More)
The recent expansion of next-generation sequencing has significantly improved biological research. Nevertheless, deep exploration of genomes or metagenomic samples remains difficult because of the sequencing depth and the associated costs required. Therefore, different partitioning strategies have been developed to sequence informative subsets of studied(More)
In recent years, high-throughput molecular tools have led to an exponential growth of available 16S rRNA gene sequences. Incorporating such data, molecular tools based on target-probe hybridization were developed to monitor microbial communities within complex environments. Unfortunately, only a few 16S rRNA gene-targeted probe collections were described.(More)
The formation water of a deep aquifer (853 m of depth) used for geological storage of natural gas was sampled to assess the mono-aromatic hydrocarbons attenuation potential of the indigenous microbiota. The study of bacterial diversity suggests that Firmicutes and, in particular, sulphate-reducing bacteria (Peptococcaceae) predominate in this microbial(More)
The detection and identification of bacterial pathogens involved in acts of bio- and agroterrorism are essential to avoid pathogen dispersal in the environment and propagation within the population. Conventional molecular methods, such as PCR amplification, DNA microarrays or shotgun sequencing, are subject to various limitations when assessing(More)
BACKGROUND High-throughput DNA sequencing technologies have revolutionized genomic analysis, including the de novo assembly of whole genomes from single organisms or metagenomic samples. However, due to the limited capacity of short-read sequence data to assemble complex or low coverage regions, genomes are typically fragmented, leading to draft genomes(More)
Bacillus subtilisstrain HUK15 has been isolated from hexachlorocyclohexane (HCH)-long-term-contaminated soil. The genome of strain HUK15 was sequenced to investigate its adaptation toward HCH and its potential capability to degrade the pesticide. Here, we report the annotated draft genome sequence (~4.3 Mbp) of this strain.
Pseudomonassp. HUK17 has been isolated from hexachlorocyclohexane (HCH) long-term contaminated soil. The genome of strain HUK17 was sequenced to elucidate its adaptation toward HCH and to evaluate the presence of pesticide degradation pathways. Here, we report the annotated draft genome sequence (~2.6 Mbp) of this strain.
The proper prediction of the gene catalogue of an organism is essential to obtain a representative snapshot of its overall lifestyle, especially when it is not amenable to culturing. Microsporidia are obligate intracellular, sometimes hard to culture, eukaryotic parasites known to infect members of every animal phylum. To date, sequencing and annotation of(More)
  • 1