Cynthia Rajani

  • Citations Per Year
Learn More
Low frequency resonance Raman (RR) spectra are reported for deoxy hemoglobin (Hb), its isolated subunits, its analogue bearing methine-deuterated hemes in all four subunits (Hb-d(4)), and the hybrids bearing the deuterated heme in only one type of subunit, which are [alpha(d4)beta(h4)](2) and [alpha(h4)beta(d4)](2). Analyzed collectively, the spectra reveal(More)
Bleomycin (Blm) is an antitumor agent which binds to specific sequences of DNA and as HO(2)-Fe(III)Blm causes single and double strand cleavage. In the present investigation, binding of O(2)-Co(II)Blm to a native DNA polymer, calf thymus DNA, was examined using conventional Raman spectroscopy. O(2)-Co(II)Blm is a model for O(2)-Fe(II)Blm, the direct(More)
Bleomycin is an antitumor agent whose cytotoxicity is dependent on its ability to bind DNA in the nucleus and effect double-stranded DNA cleavage, which is difficult for the cell to repair. In order for this DNA cleavage to occur, bleomycin must, through a series of reactions, form a low-spin Fe(III) complex, the putative "activated" form of the drug,(More)
Double-stranded DNA is targeted by bleomycin in cancer cells and ambiguity exists as to its mode of DNA binding. A conventional Raman study was performed on drug/DNA complexes in which the low frequency spectral region (560-930 cm(-1)) was examined at two temperatures (19 and 30 degrees C). At 30 degrees C, a global Raman hypochromism was observed(More)
Bleomycins A(2) and B(2) are the two active components in the antineoplastic drug Blenoxane. DNA is targeted by this drug in cancer cells and the mode of action of this drug involves DNA binding. Ambiguity exists as to the way in which bleomycin binds to DNA. Raman spectroscopy was used to examine both calf thymus DNA and a bleomycin/DNA complex at two(More)
  • 1