Learn More
The mechanisms causing the impaired regenerative response to injury observed in skeletal muscle of old animals are unknown. Satellite cells, stem cell descendants within adult skeletal muscle, are the primary source of regenerating muscle fibers. Apoptosis may be a mechanism responsible for the depletion of satellite cells in old animals. This work tested(More)
The aim of this study was to determine the optimal stage of development at which transplant human ex vivo-produced oral mucosa equivalents (EVPOMEs) in vivo. EVPOMEs were generated in a serum-free culture system, without the use of an irradiated xenogeneic feeder layer, by seeding human oral keratinocytes onto a human cadaveric dermal equivalent, AlloDerm.(More)
The metabolism of [3H]benzo[a]pyrene (BP) by cultured primary keratinocytes prepared from BALB/C mouse epidermis was found to be largely inhibited by the dietary plant phenol, ellagic acid. Varying concentrations of ellagic acid added to the keratinocyte cultures resulted in a dose-dependent inhibition of the cytochrome P-450-dependent monooxygenases aryl(More)
A population of neonatal mouse keratinocytes (epidermal basal cells) was obtained by gentle, short-term trypsin separation of the epidermal and dermal skin compartments and discontinuous Ficoll gradient purification of the resulting epidermal cells. Over 4--6 wk of culture growth at 32--33 degrees C, the primary cultures formed a complete monolayer that(More)
A problem maxillofacial surgeons face is a lack of sufficient autogenous oral mucosa for reconstruction of the oral cavity. Split-thickness or oral mucosa grafts require more than one surgical procedure and can result in donor site morbidity. Skin has disadvantages of adnexal structures and a different keratinization pattern than oral mucosa. In this study,(More)
The present studies were undertaken in order to delineate the source of human epidermal arachidonic acid, 20:4(n-6). Epidermal microsomal preparations from normal (N) and diseased epidermis (clinically uninvolved (PU) and involved psoriatic (PI) epidermis) were incubated in vitro with either [14C]18:2(n-6), [14C]20:3(n-6) or [14C]malonyl CoA to determine(More)
The polyunsaturated fatty acids linoleic acid (18:2, n-6) and arachidonic acid (20:4, n-6) are essential for normal skin function and structure, both as eicosanoid precursors and as components of lipids forming cell membranes. Adult human keratinocytes grow optimally in serum-free medium (MCDB 153) that contains no fatty acids. These keratinocytes expand(More)
Adult human epidermal keratinocytes grow rapidly in medium that is essential fatty acid (EFA)-deficient. In this medium they exhibit decreased amounts of the fatty acids, 18:2, 20:3, 20:4, and contain increased amounts of monounsaturated fatty acids. [14C]- and [3H]acetate and radiolabeled fatty acids, 16:0, 18:2, and 20:4 were used to study the fatty acid(More)
Cultured adult human keratinocytes show accelerated growth rates in medium that is essential fatty acid deficient. The cells also show decreased amounts of the essential fatty acids 18:2, 20:3, and 20:4 and contain increased amounts of the monounsaturated fatty acids 16:1 and 18:1. These lower levels of polyunsaturated fatty acids were only partially(More)