Cynthia J. Hansel

Learn More
Long-term changes of synaptic efficacy, in particular when they are use-dependent, are candidate mechanisms for the storage of information in the nervous system. In a variety of brain structures, including the neocortex and hippocampus, synapses are susceptible to long-term potentiation (LTP) and long-term depression (LTD). It has been hypothesized that the(More)
Adaptive processes within cerebellar circuits, such as long-term depression and long-term potentiation at parallel fiber-Purkinje cell synapses, have long been seen as important to cerebellar motor learning, and yet little attention has been given to any possible significance of these processes for cerebellar dysfunction and disease. Several forms of ataxia(More)
Changes in [Ca2+]i were measured in layer II-III pyramid cells of the rat visual cortex slices during application of either LTP or LTD inducing stimulation protocols. At dendritic sites activated by the stimulated afferents [Ca2+]i reached higher amplitudes and decayed more slowly with LTP than with LTD inducing stimuli. In the presence of Ca2+ chelators,(More)
The climbing fibre (CF) input controls cerebellar Purkinje cell (PC) activity as well as synaptic plasticity at parallel fibre (PF)-PC synapses. Under high activity conditions, CFs release not only glutamate, but also the neuropeptide corticotropin-releasing factor (CRF). Brief periods of such high CF activity can lead to the induction of long-term(More)
Amino acid levels were measured in perfusates from biplanar slices of rat cerebellum installed in a Krebs-filled three-compartment chamber. The two lateral compartments housed the white matter and a section containing parallel fibres respectively. The central compartment housed cortical structures, including the Purkinje cell and granule cell bodies. This(More)
  • 1