Learn More
An alpha-amylase was purified from culture supernatants of Sulfolobus solfataricus 98/2 during growth on starch as the sole carbon and energy source. The enzyme is a homodimer with a subunit mass of 120 kDa. It catalyzes the hydrolysis of starch, dextrin, and alpha-cyclodextrin with similar efficiencies. Addition of exogenous glucose represses production of(More)
Acidic hot springs are colonized by a diversity of hyperthermophilic organisms requiring extremes of temperature and pH for growth. To clarify how carbohydrates are consumed in such locations, the structural gene (malA) encoding the major soluble alpha-glucosidase (maltase) and flanking sequences from Sulfolobus solfataricus were cloned and characterized.(More)
The existence of a global gene regulatory system in the hyperthermophilic archaeon Sulfolobus solfataricus is described. The system is responsive to carbon source quality and acts at the level of transcription to coordinate synthesis of three physically unlinked glycosyl hydrolases implicated in carbohydrate utilization. The specific activities of three(More)
The hyperthermophilic archaeon Sulfolobus solfataricus employs a catabolite repression-like regulatory system to control enzymes involved in carbon and energy metabolism. To better understand the basis of this system, spontaneous glycosyl hydrolase mutants were isolated using a genetic screen for mutations, which reduced expression of the lacS gene. The(More)
Homologous recombination is an important pathway in the repair of DNA double-strand breaks in all organisms. In mesophiles, single-stranded DNA binding proteins (SSBs) are believed to be involved in the removal of single-stranded DNA (ssDNA) secondary structure during the presynaptic step of homologous recombination, facilitating the formation of a(More)
Commercial bioprocessing of plant carbohydrates, such as starch or cellulose, necessitates the use of commodity enzyme additives to accelerate polysaccharide hydrolysis. To simplify this procedure, transgenic plant tissues constitutively producing commodity enzymes were examined as a strategy for accelerating carbohydrate bioprocessing. Hyperthermophilic(More)
Rad54 protein is a key member of the RAD52 epistasis group required for homologous recombination in eukaryotes. Rad54 is a duplex DNA translocase that remodels both DNA and protein-DNA complexes, and functions at multiple steps in the recombination process. Here we use biochemical criteria to demonstrate the existence of this important protein in a(More)
Few antibiotics targeting members of the archaeal domain are currently available for genetic studies. Since bacterial antibiotics are frequently directed against competing and related organisms, archaea by analogy might produce effective antiarchaeal antibiotics. Peptide antibiotic (halocin) preparations from euryarchaeal halophilic strains S8a, GN101, and(More)
Single-stranded DNA binding proteins (SSBs) have been identified in all three domains of life. Here, we report the identification of a novel crenarchaeal SSB protein that is distinctly different from its euryarchaeal counterparts. Rather than comprising four DNA-binding domains and a zinc-finger motif within a single polypeptide of 645 amino acids, as for(More)