Learn More
Neural prostheses translate neural activity from the brain into control signals for guiding prosthetic devices, such as computer cursors and robotic limbs, and thus offer individuals with disabilities greater interaction with the world. However, relatively low performance remains a critical barrier to successful clinical translation; current neural(More)
Some movements that animals and humans make are highly stereotyped, repeated with little variation. The patterns of neural activity associated with repeats of a movement may be highly similar, or the same movement may arise from different patterns of neural activity, if the brain exploits redundancies in the neural projections to muscles. We examined the(More)
Neural prosthetic systems seek to improve the lives of severely disabled people by decoding neural activity into useful behavioral commands. These systems and their decoding algorithms are typically developed "offline," using neural activity previously gathered from a healthy animal, and the decoded movement is then compared with the true movement that(More)
Cortically-controlled prosthetic systems aim to help disabled patients by translating neural signals from the brain into control signals for guiding prosthetic devices. Recent reports have demonstrated reasonably high levels of performance and control of computer cursors and prosthetic limbs, but to achieve true clinical viability, the long-term operation(More)
HermesD is a high-rate, low-power wireless transmission system to aid research in neural prosthetic systems for motor disabilities and basic motor neuroscience. It is the third generation of our "Hermes systems" aimed at recording and transmitting neural activity from brain-implanted electrode arrays. This system supports the simultaneous transmission of 32(More)
OBJECTIVE Brain-machine interface systems translate recorded neural signals into command signals for assistive technology. In individuals with upper limb amputation or cervical spinal cord injury, the restoration of a useful hand grasp could significantly improve daily function. We sought to determine if electrocorticographic (ECoG) signals contain(More)
OBJECTIVE For intracortical brain-machine interfaces (BMIs), action potential voltage waveforms are often sorted to separate out individual neurons. If these neurons contain independent tuning information, this process could increase BMI performance. However, the sorting of action potentials ('spikes') requires high sampling rates and is computationally(More)
Neural prosthetic systems aim to help disabled patients by translating neural signals from the brain into control signals for guiding computer cursors, prosthetic arms, and other assistive devices. Intracortical electrode arrays measure action potentials and local field potentials from individual neurons, or small populations of neurons, in the motor(More)
We present benchtop and in vivo experimental results from an integrated circuit designed for wireless implantable neural recording applications. The chip, which was fabricated in a commercially available 0.6- mum 2P3M BiCMOS process, contains 100 amplifiers, a 10-bit analog-to-digital converter (ADC), 100 threshold-based spike detectors, and a 902-928 MHz(More)
Neural prosthetic systems have the potential to restore lost functionality to amputees or patients suffering from neurological injury or disease. Current systems have primarily been designed for immobile patients, such as tetraplegics functioning in a rather static, carefully tailored environment. However, an active patient such as amputee in a normal(More)