Curtiss O. Davis

Learn More
New coastal ocean remote sensing techniques permit benthic habitats to be explored with higher resolution than ever before. A mechanistic radiative transfer approach is developed that first removes the distorting influence of the water column on the remotely sensed signal to retrieve an estimate of the reflectance at the seafloor. The retrieved bottom(More)
A spectrum-matching and look-up-table (LUT) methodology has been developed and evaluated to extract environmental information from remotely sensed hyperspectral imagery. The LUT methodology works as follows. First, a database of remote-sensing reflectance (Rrs) spectra corresponding to various water depths, bottom reflectance spectra, and water-column(More)
[1] Euphotic zone depth, z1%, reflects the depth where photosynthetic available radiation (PAR) is 1% of its surface value. The value of z1% is a measure of water clarity, which is an important parameter regarding ecosystems. Based on the Case-1 water assumption, z1% can be estimated empirically from the remotely derived concentration of chlorophyll-a(More)
Remote sensing is a valuable tool for rapid identification of benthic features in coastal environments. Past applications have been limited, however, by multispectral models that are typically difficult to apply when bottom types are heterogeneous and complex. We attempt to overcome these limitations by using a spectral library of remote sensing reflectance(More)
Ocean color sensors were designed mainly for remote sensing of chlorophyll concentrations over the clear open oceanic areas (Case 1 water) using channels between 0.4–0.86 m. The Moderate Resolution Imaging Spectroradiometer (MODIS) launched on the National Aeronautics and Space Administration Terra and Aqua spacecrafts is equipped with narrow channels(More)
We present the results of a study of optical scattering and backscattering of particulates for three coastal sites that represent a wide range of optical properties that are found in U.S. near-shore waters. The 6000 scattering and backscattering spectra collected for this study can be well approximated by a power-law function of wavelength. The power-law(More)
The propagation of downwelling irradiance at wavelength from surface to a depth (z) in the ocean is governed by the diffuse attenuation coefficient, ) ( d K . There are two standard methods for the derivation of ) ( d K in remote sensing, which both are based on empirical relationships involving the blue-to-green ratio of ocean color. Recently, a(More)
Hyperion is a hyperspectral sensor on board NASA’s EO-1 satellite with a spatial resolution of approximately 30 m and a swath width of about 7 km. It was originally designed for land applications, but its unique spectral configuration (430 nm – 2400 nm with a ~10 nm spectral resolution) and high spatial resolution make it attractive for studying complex(More)
Sensor design and mission planning for satellite ocean color measurements requires careful consideration of the signal dynamic range and sensitivity (specifically here signal-to-noise ratio or SNR) so that small changes of ocean properties (e.g., surface chlorophyll-a concentrations or Chl) can be quantified while most measurements are not saturated. Past(More)
The Ocean Portable Hyperspectral Imager for Low-Light Spectroscopy (Ocean PHILLS) is a hyperspectral imager specifically designed for imaging the coastal ocean. It uses a thinned, backsideilluminated CCD for high sensitivity and an all-reflective spectrograph with a convex grating in an Offner configuration to produce a nearly distortionfree image. The(More)