Curtis Woodford

Learn More
This study aims to investigate the settings that provide optimum registration accuracy when registering megavoltage CT (MVCT) studies acquired on tomotherapy with planning kilovoltage CT (kVCT) studies of patients with lung cancer. For each experiment, the systematic difference between the actual and planned positions of the thorax phantom was determined by(More)
This study aims to determine the settings that provide the optimal clinical accuracy and consistency for the registration of megavoltage CT (MVCT) with planning kilovoltage CT image sets on the Hi-ART tomotherapy system. The systematic offset between the MVCT and the planning kVCT was determined by registration of multiple MVCT scans of a head phantom(More)
This study aims to quantify the effects of target motion and resultant motion artifacts in planning and megavoltage CT (MVCT) studies on the automatic registration processes of helical tomotherapy. Clinical and experimental data were used to derive an action level for patient repositioning on helical tomotherapy. Planning CT studies of a respiratory motion(More)
Perfusion decellularisation is a promising technique in scaffold production for tissue engineering. The similarity of decellularised extracellular matrix to native matrix is attractive for the development of compatible and functional constructs for therapeutic applications. Here, whole organs were processed for tissue culture with an emphasis on production(More)
Helical tomotherapy is a new form of image-guided radiation therapy that combines features of a linear accelerator and a helical computed tomography (CT) scanner. Megavoltage CT (MVCT) data allow the verification and correction of patient setup on the couch by comparison and image registration with the kilovoltage CT multi-slice images used for treatment(More)
  • 1